These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 26089095)

  • 1. Independent component analysis of functional networks for response inhibition: Inter-subject variation in stop signal reaction time.
    Zhang S; Tsai SJ; Hu S; Xu J; Chao HH; Calhoun VD; Li CS
    Hum Brain Mapp; 2015 Sep; 36(9):3289-302. PubMed ID: 26089095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional networks for cognitive control in a stop signal task: independent component analysis.
    Zhang S; Li CS
    Hum Brain Mapp; 2012 Jan; 33(1):89-104. PubMed ID: 21365716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural processes of preparatory control for stop signal inhibition.
    Hu S; Li CS
    Hum Brain Mapp; 2012 Dec; 33(12):2785-96. PubMed ID: 21976392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct neural processes support post-success and post-error slowing in the stop signal task.
    Zhang Y; Ide JS; Zhang S; Hu S; Valchev NS; Tang X; Li CR
    Neuroscience; 2017 Aug; 357():273-284. PubMed ID: 28627420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Right Superior Frontal Gyrus and Individual Variation in Proactive Control of Impulsive Response.
    Hu S; Ide JS; Zhang S; Li CR
    J Neurosci; 2016 Dec; 36(50):12688-12696. PubMed ID: 27974616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BOLD differences normally attributed to inhibitory control predict symptoms, not task-directed inhibitory control in ADHD.
    Chevrier A; Schachar RJ
    J Neurodev Disord; 2020 Feb; 12(1):8. PubMed ID: 32085698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response inhibition and fronto-striatal-thalamic circuit dysfunction in cocaine addiction.
    Wang W; Worhunsky PD; Zhang S; Le TM; Potenza MN; Li CR
    Drug Alcohol Depend; 2018 Nov; 192():137-145. PubMed ID: 30248560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conflict anticipation in alcohol dependence - A model-based fMRI study of stop signal task.
    Hu S; Ide JS; Zhang S; Sinha R; Li CS
    Neuroimage Clin; 2015; 8():39-50. PubMed ID: 26106526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the effects of age on proactive control in healthy adults.
    Hu S; Job M; Jenks SK; Chao HH; Li CR
    Brain Imaging Behav; 2019 Dec; 13(6):1526-1537. PubMed ID: 31011949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity and Connectivity Differences Underlying Inhibitory Control Across the Adult Life Span.
    Tsvetanov KA; Ye Z; Hughes L; Samu D; Treder MS; Wolpe N; Tyler LK; Rowe JB;
    J Neurosci; 2018 Sep; 38(36):7887-7900. PubMed ID: 30049889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcortical processes of motor response inhibition during a stop signal task.
    Li CS; Yan P; Sinha R; Lee TW
    Neuroimage; 2008 Jul; 41(4):1352-63. PubMed ID: 18485743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks.
    Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ
    Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.
    Manza P; Hu S; Chao HH; Zhang S; Leung HC; Li CR
    Neuroimage; 2016 Jul; 134():466-474. PubMed ID: 27126003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation of response inhibition and performance monitoring in the stop signal task using event-related fMRI.
    Chevrier AD; Noseworthy MD; Schachar R
    Hum Brain Mapp; 2007 Dec; 28(12):1347-58. PubMed ID: 17274022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the pre-supplementary motor area but not inferior prefrontal cortex in association with short stop signal reaction time--an intra-subject analysis.
    Chao HH; Luo X; Chang JL; Li CS
    BMC Neurosci; 2009 Jul; 10():75. PubMed ID: 19602259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of different Stop-signal response time estimation procedures on behavior-behavior and brain-behavior correlations.
    Boehler CN; Appelbaum LG; Krebs RM; Hopf JM; Woldorff MG
    Behav Brain Res; 2012 Apr; 229(1):123-30. PubMed ID: 22245527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing.
    Li CS; Huang C; Constable RT; Sinha R
    J Neurosci; 2006 Jan; 26(1):186-92. PubMed ID: 16399686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greater activation of the response inhibition network in females compared to males during stop signal task performance.
    Gaillard A; Rossell SL; Carruthers SP; Sumner PJ; Michie PT; Woods W; Neill E; Phillipou A; Toh WL; Hughes ME
    Behav Brain Res; 2020 May; 386():112586. PubMed ID: 32194187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.