These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 26089151)

  • 1. Functional characterization and expression analysis of cucumber (Cucumis sativus L.) hexose transporters, involving carbohydrate partitioning and phloem unloading in sink tissues.
    Cheng JT; Li X; Yao FZ; Shan N; Li YH; Zhang ZX; Sui XL
    Plant Sci; 2015 Aug; 237():46-56. PubMed ID: 26089151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of hexose transporter CsHT3 increases cellulose content in cucumber fruit peduncle.
    Cheng J; Wen S; Bie Z
    Plant Physiol Biochem; 2019 Dec; 145():107-113. PubMed ID: 31677541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development.
    Li Y; Liu H; Yao X; Wang J; Feng S; Sun L; Ma S; Xu K; Chen LQ; Sui X
    Plant Physiol; 2021 May; 186(1):640-654. PubMed ID: 33604597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.
    Hu L; Sun H; Li R; Zhang L; Wang S; Sui X; Zhang Z
    Plant Cell Environ; 2011 Nov; 34(11):1835-48. PubMed ID: 21707653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Down-Regulating CsHT1, a Cucumber Pollen-Specific Hexose Transporter, Inhibits Pollen Germination, Tube Growth, and Seed Development.
    Cheng J; Wang Z; Yao F; Gao L; Ma S; Sui X; Zhang Z
    Plant Physiol; 2015 Jun; 168(2):635-47. PubMed ID: 25888616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression of the apple hexose transporter MdHT2.2 altered sugar concentration with increasing cell wall invertase activity in tomato fruit.
    Wang Z; Wei X; Yang J; Li H; Ma B; Zhang K; Zhang Y; Cheng L; Ma F; Li M
    Plant Biotechnol J; 2020 Feb; 18(2):540-552. PubMed ID: 31350935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phloem transcriptome signatures underpin the physiological differentiation of the pedicel, stalk and fruit of cucumber (Cucumis sativus L.).
    Zhao J; Li Y; Ding L; Yan S; Liu M; Jiang L; Zhao W; Wang Q; Yan L; Liu R; Zhang X
    Plant Cell Physiol; 2016 Jan; 57(1):19-34. PubMed ID: 26568324
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Hu L; Zhang F; Song S; Yu X; Ren Y; Zhao X; Liu H; Liu G; Wang Y; He H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Characterization of
    Hu L; Tian J; Zhang F; Song S; Cheng B; Liu G; Liu H; Zhao X; Wang Y; He H
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative polyadenylation of the stacyose synthase gene mediates source-sink regulation in cucumber.
    Zhang J; Gu H; Dai H; Zhang Z; Miao M
    J Plant Physiol; 2020 Feb; 245():153111. PubMed ID: 31926460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkaline α-galactosidase 2 (CsAGA2) plays a pivotal role in mediating source-sink communication in cucumber.
    Liu H; Liu X; Zhao Y; Nie J; Yao X; Lv L; Yang J; Ma N; Guo Y; Li Y; Yang X; Lin T; Sui X
    Plant Physiol; 2022 Jun; 189(3):1501-1518. PubMed ID: 35357489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Characterization of a Cucumber (
    Feng Z; Zheng F; Wu S; Li R; Li Y; Zhong J; Zhao H
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing of the gibberellin receptor homolog, CsGID1a, affects locule formation in cucumber (Cucumis sativus) fruit.
    Liu B; Liu X; Yang S; Chen C; Xue S; Cai Y; Wang D; Yin S; Gai X; Ren H
    New Phytol; 2016 Apr; 210(2):551-63. PubMed ID: 26701170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic and functional analysis of cucumber (Cucumis sativus L.) fruit phloem during early development.
    Sui X; Nie J; Li X; Scanlon MJ; Zhang C; Zheng Y; Ma S; Shan N; Fei Z; Turgeon R; Zhang Z
    Plant J; 2018 Dec; 96(5):982-996. PubMed ID: 30194881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Sugar Transporter CsSWEET7a in Apoplasmic Phloem Unloading in Receptacle and Nectary During Cucumber Anthesis.
    Li Y; Liu H; Yao X; Sun L; Sui X
    Front Plant Sci; 2021; 12():758526. PubMed ID: 35173746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues.
    Hayes MA; Davies C; Dry IB
    J Exp Bot; 2007; 58(8):1985-97. PubMed ID: 17452752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phloem loading in cucumber: combined symplastic and apoplastic strategies.
    Ma S; Sun L; Sui X; Li Y; Chang Y; Fan J; Zhang Z
    Plant J; 2019 May; 98(3):391-404. PubMed ID: 30604489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance.
    Lü J; Sui X; Ma S; Li X; Liu H; Zhang Z
    Plant Mol Biol; 2017 Sep; 95(1-2):1-15. PubMed ID: 28608281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit.
    Chen C; Yuan Y; Zhang C; Li H; Ma F; Li M
    Plant Sci; 2017 Feb; 255():40-50. PubMed ID: 28131340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CsAGA1 and CsAGA2 Mediate RFO Hydrolysis in Partially Distinct Manner in Cucumber Fruits.
    Hua B; Zhang M; Zhang J; Dai H; Zhang Z; Miao M
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.