These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 26089417)
1. Draft Genome Sequence of Gluconobacter oxydans NL71, a Strain That Efficiently Biocatalyzes Xylose to Xylonic Acid at a High Concentration. Miao Y; Zhou X; Xu Y; Yu S Genome Announc; 2015 Jun; 3(3):. PubMed ID: 26089417 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate. Mao X; Zhang B; Zhao C; Lin J; Wei D Microb Cell Fact; 2022 Mar; 21(1):35. PubMed ID: 35264166 [TBL] [Abstract][Full Text] [Related]
3. Efficient coproduction of gluconic acid and xylonic acid from lignocellulosic hydrolysate by Zn(II)-selective inhibition on whole-cell catalysis by Gluconobacter oxydans. Zhou X; Zhou X; Huang L; Cao R; Xu Y Bioresour Technol; 2017 Nov; 243():855-859. PubMed ID: 28724257 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans. Zhou X; Xu Y; Yu S Appl Biochem Biotechnol; 2016 Jan; 178(1):1-8. PubMed ID: 26378011 [TBL] [Abstract][Full Text] [Related]
5. Kinetic modeling of xylonic acid production by Gluconobacter oxydans: effects of hydrodynamic conditions. Liu X; Ding C; He T; Zhu Y; Sun L; Xu C; Gu X Bioprocess Biosyst Eng; 2023 Jun; 46(6):829-837. PubMed ID: 36952003 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin. Shen Y; Zhou X; Xu Y Appl Biochem Biotechnol; 2020 Jul; 191(3):1072-1083. PubMed ID: 31960365 [TBL] [Abstract][Full Text] [Related]
7. Effects of Inhibitors on the Transcriptional Profiling of Miao Y; Shen Y; Xu Y Front Microbiol; 2017; 8():716. PubMed ID: 28487685 [TBL] [Abstract][Full Text] [Related]
8. Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique. Zhou X; Zhou X; Xu Y Bioresour Technol; 2017 Nov; 244(Pt 1):1137-1141. PubMed ID: 28863996 [TBL] [Abstract][Full Text] [Related]
9. Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst. Zhou X; Han J; Xu Y Bioresour Technol; 2019 Jun; 282():378-383. PubMed ID: 30884457 [TBL] [Abstract][Full Text] [Related]
10. A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans. Han J; Hua X; Zhou X; Xu B; Wang H; Huang G; Xu Y Bioresour Technol; 2021 Aug; 333():125157. PubMed ID: 33878501 [TBL] [Abstract][Full Text] [Related]
11. Screening of Gluconobacter oxydans in xylonic acid fermentation for tolerance of the inhibitors formed dilute acid pretreatment. Jiang W; Dai L; Tan X; Zhou X; Xu Y Bioprocess Biosyst Eng; 2023 Apr; 46(4):589-597. PubMed ID: 36670301 [TBL] [Abstract][Full Text] [Related]
12. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate. Zhou X; Zhou X; Tang X; Xu Y Bioresour Technol; 2018 Aug; 261():288-293. PubMed ID: 29677656 [TBL] [Abstract][Full Text] [Related]
13. Enhancement in xylonate production from hemicellulose pre-hydrolysate by powdered activated carbon treatment. Dai L; Jiang W; Zhou X; Xu Y Bioresour Technol; 2020 Nov; 316():123944. PubMed ID: 32769000 [TBL] [Abstract][Full Text] [Related]
14. Optimization of Specific Productivity for Xylonic Acid Production by He T; Xu C; Ding C; Liu X; Gu X Front Bioeng Biotechnol; 2021; 9():729988. PubMed ID: 34485263 [TBL] [Abstract][Full Text] [Related]
15. A smart self-balancing biosystem with reversible competitive adsorption of in-situ anion exchange resin for whole-cell catalysis preparation of lignocellulosic xylonic acid. Lv Y; Zhou S; Zhang X; Xu Y Bioresour Technol; 2022 Nov; 363():127998. PubMed ID: 36150427 [TBL] [Abstract][Full Text] [Related]
16. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR). Zhou X; Zhou X; Xu Y; Yu S Bioprocess Biosyst Eng; 2016 Aug; 39(8):1315-8. PubMed ID: 27021347 [TBL] [Abstract][Full Text] [Related]
17. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis. Zhang H; Liu G; Zhang J; Bao J Bioresour Technol; 2016 Nov; 219():123-131. PubMed ID: 27484668 [TBL] [Abstract][Full Text] [Related]
18. Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way. Yan J; Xu J; Cao M; Li Z; Xu C; Wang X; Yang C; Xu P; Gao C; Ma C Microb Cell Fact; 2018 Oct; 17(1):158. PubMed ID: 30296949 [TBL] [Abstract][Full Text] [Related]