These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26089794)

  • 1. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.
    Bayati M; Valizadeh A; Abbassian A; Cheng S
    Front Comput Neurosci; 2015; 9():69. PubMed ID: 26089794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust development of synfire chains from multiple plasticity mechanisms.
    Zheng P; Triesch J
    Front Comput Neurosci; 2014; 8():66. PubMed ID: 25071537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long Synfire Chains Emerge by Spike-Timing Dependent Plasticity Modulated by Population Activity.
    Weissenberger F; Meier F; Lengler J; Einarsson H; Steger A
    Int J Neural Syst; 2017 Dec; 27(8):1750044. PubMed ID: 28982282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns.
    Hosaka R; Araki O; Ikeguchi T
    Neural Comput; 2008 Feb; 20(2):415-35. PubMed ID: 18045011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity dynamics and propagation of synchronous spiking in locally connected random networks.
    Mehring C; Hehl U; Kubo M; Diesmann M; Aertsen A
    Biol Cybern; 2003 May; 88(5):395-408. PubMed ID: 12750902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic excitability state of local neuronal population modulates signal propagation in feed-forward neural networks.
    Han R; Wang J; Yu H; Deng B; Wei X; Qin Y; Wang H
    Chaos; 2015 Apr; 25(4):043108. PubMed ID: 25933656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity.
    Takahashi YK; Kori H; Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal propagation and logic gating in networks of integrate-and-fire neurons.
    Vogels TP; Abbott LF
    J Neurosci; 2005 Nov; 25(46):10786-95. PubMed ID: 16291952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks.
    Miller A; Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062716. PubMed ID: 24483495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional spike propagation in a recurrent network: dynamical firewall as anisotropic recurrent inhibition.
    Samura T; Hayashi H
    Neural Netw; 2012 Sep; 33():236-46. PubMed ID: 22717450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation.
    Chua Y; Morrison A
    Front Comput Neurosci; 2016; 10():76. PubMed ID: 27499740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks.
    Madadi Asl M; Valizadeh A; Tass PA
    Chaos; 2018 Oct; 28(10):106308. PubMed ID: 30384625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutual Information and Information Gating in Synfire Chains.
    Xiao Z; Wang B; Sornborger AT; Tao L
    Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synconset waves and chains: spiking onsets in synchronous populations predict and are predicted by network structure.
    Raghavan M; Amrutur B; Narayanan R; Sikdar SK
    PLoS One; 2013; 8(10):e74910. PubMed ID: 24116018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity.
    Waddington A; Appleby PA; De Kamps M; Cohen N
    Front Comput Neurosci; 2012; 6():88. PubMed ID: 23162457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graded, Dynamically Routable Information Processing with Synfire-Gated Synfire Chains.
    Wang Z; Sornborger AT; Tao L
    PLoS Comput Biol; 2016 Jun; 12(6):e1004979. PubMed ID: 27310184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagating synchrony in feed-forward networks.
    Jahnke S; Memmesheimer RM; Timme M
    Front Comput Neurosci; 2013; 7():153. PubMed ID: 24298251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):411-26. PubMed ID: 19937071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-timing computation properties of a feed-forward neural network model.
    Sinha DB; Ledbetter NM; Barbour DL
    Front Comput Neurosci; 2014; 8():5. PubMed ID: 24478688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.