BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26089837)

  • 1. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize.
    Musungu B; Bhatnagar D; Brown RL; Fakhoury AM; Geisler M
    Front Genet; 2015; 6():201. PubMed ID: 26089837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A predicted interactome for Arabidopsis.
    Geisler-Lee J; O'Toole N; Ammar R; Provart NJ; Millar AH; Geisler M
    Plant Physiol; 2007 Oct; 145(2):317-29. PubMed ID: 17675552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis and Clostridium difficille interactomes: demonstration of rapid development of computational system for bacterial interactome prediction.
    Ananthasubramanian S; Metri R; Khetan A; Gupta A; Handen A; Chandra N; Ganapathiraju M
    Microb Inform Exp; 2012 Mar; 2():4. PubMed ID: 22587966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides.
    Kim M; Zhang H; Woloshuk C; Shim WB; Yoon BJ
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S12. PubMed ID: 26423221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of evolutionarily conserved interologs in Mus musculus.
    Yellaboina S; Dudekula DB; Ko MSh
    BMC Genomics; 2008 Oct; 9():465. PubMed ID: 18842131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs.
    Cheng D; Tan M; Yu H; Li L; Zhu D; Chen Y; Jiang M
    BMC Genomics; 2018 Sep; 19(1):709. PubMed ID: 30257650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global De Novo Protein-Protein Interactome Elucidates Interactions of Drought-Responsive Proteins in Horse Gram (Macrotyloma uniflorum).
    Bhardwaj J; Gangwar I; Panzade G; Shankar R; Yadav SK
    J Proteome Res; 2016 Jun; 15(6):1794-809. PubMed ID: 27161830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A predicted protein interactome for rice.
    Ho CL; Wu Y; Shen HB; Provart NJ; Geisler M
    Rice (N Y); 2012 Jul; 5(1):15. PubMed ID: 24279740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial protein meta-interactomes predict cross-species interactions and protein function.
    Caufield JH; Wimble C; Shary S; Wuchty S; Uetz P
    BMC Bioinformatics; 2017 Mar; 18(1):171. PubMed ID: 28298180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicted protein-protein interactions in the moss Physcomitrella patens: a new bioinformatic resource.
    Schuette S; Piatkowski B; Corley A; Lang D; Geisler M
    BMC Bioinformatics; 2015 Mar; 16(1):89. PubMed ID: 25885037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proteome-wide protein interaction map for Campylobacter jejuni.
    Parrish JR; Yu J; Liu G; Hines JA; Chan JE; Mangiola BA; Zhang H; Pacifico S; Fotouhi F; DiRita VJ; Ideker T; Andrews P; Finley RL
    Genome Biol; 2007; 8(7):R130. PubMed ID: 17615063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tapeworm interactome: inferring confidence scored protein-protein interactions from the proteome of Hymenolepis microstoma.
    James K; Olson PD
    BMC Genomics; 2020 May; 21(1):346. PubMed ID: 32380953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MaizeNet: a co-functional network for network-assisted systems genetics in Zea mays.
    Lee T; Lee S; Yang S; Lee I
    Plant J; 2019 Aug; 99(3):571-582. PubMed ID: 31006149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An "on-matrix" digestion procedure for AP-MS experiments dissects the interplay between complex-conserved and serotype-specific reactivities in Dengue virus-human plasma interactome.
    Ramos Y; Huerta V; Martín D; Palomares S; Yero A; Pupo D; Gallien S; Martín AM; Pérez-Riverol Y; Sarría M; Guirola O; Chinea G; Domon B; González LJ
    J Proteomics; 2019 Feb; 193():71-84. PubMed ID: 28713027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An updated gene atlas for maize reveals organ-specific and stress-induced genes.
    Hoopes GM; Hamilton JP; Wood JC; Esteban E; Pasha A; Vaillancourt B; Provart NJ; Buell CR
    Plant J; 2019 Mar; 97(6):1154-1167. PubMed ID: 30537259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New lncRNA annotation reveals extensive functional divergence of the transcriptome in maize.
    Han L; Mu Z; Luo Z; Pan Q; Li L
    J Integr Plant Biol; 2019 Apr; 61(4):394-405. PubMed ID: 30117291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction.
    Sun W; Chen H; Wang J; Sun HW; Yang SK; Sang YL; Lu XB; Xu XH
    Funct Integr Genomics; 2015 Jan; 15(1):107-20. PubMed ID: 25388988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of the RCI2 gene family in maize (Zea mays).
    Zhao Y; Tong H; Cai R; Peng X; Li X; Gan D; Zhu S
    J Genet; 2014 Dec; 93(3):655-66. PubMed ID: 25572224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.
    Li L; Briskine R; Schaefer R; Schnable PS; Myers CL; Flagel LE; Springer NM; Muehlbauer GJ
    BMC Genomics; 2016 Nov; 17(1):875. PubMed ID: 27814670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression profile analysis of maize in response to Setosphaeria turcica.
    Shi F; Zhang Y; Wang K; Meng Q; Liu X; Ma L; Li Y; Liu J; Ma L
    Gene; 2018 Jun; 659():100-108. PubMed ID: 29548860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.