These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26089863)

  • 1. Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network.
    Budiharto W
    Comput Intell Neurosci; 2015; 2015():745823. PubMed ID: 26089863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.
    Shirzadeh M; Amirkhani A; Jalali A; Mosavi MR
    ISA Trans; 2015 Nov; 59():290-302. PubMed ID: 26521725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.
    Alnajjar F; Murase K
    Int J Neural Syst; 2006 Aug; 16(4):229-39. PubMed ID: 16972312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments.
    Araújo R
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1235-49. PubMed ID: 17001984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obstacle Avoidance of Multi-Sensor Intelligent Robot Based on Road Sign Detection.
    Zhao J; Fang J; Wang S; Wang K; Liu C; Han T
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and production of robot trajectories using the Temporal Parametrized Self Organizing Maps.
    Padoan Junior AC; De A Barreto G; Araújo AF
    Int J Neural Syst; 2003 Apr; 13(2):119-27. PubMed ID: 12923925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.
    Li Y; Sun R; Wang Y; Li H; Zheng X
    PLoS One; 2016; 11(11):e0165600. PubMed ID: 27806074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular Nonlinear Networks for the emergence of perceptual states: application to robot navigation control.
    Arena P; De Fiore S; Patané L
    Neural Netw; 2009; 22(5-6):801-11. PubMed ID: 19596552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural network controller for the path tracking control of a hopping robot involving time delays.
    Chaitanya VS; Reddy MS
    Int J Neural Syst; 2006 Feb; 16(1):47-62. PubMed ID: 16496438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model.
    Ito M; Noda K; Hoshino Y; Tani J
    Neural Netw; 2006 Apr; 19(3):323-37. PubMed ID: 16618536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural learning classifier system with self-adaptive constructivism for mobile robot control.
    Hurst J; Bull L
    Artif Life; 2006; 12(3):353-80. PubMed ID: 16859445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics.
    Wai RJ; Muthusamy R
    IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):274-87. PubMed ID: 24808281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning anticipation via spiking networks: application to navigation control.
    Arena P; Fortuna L; Frasca M; Patané L
    IEEE Trans Neural Netw; 2009 Feb; 20(2):202-16. PubMed ID: 19150797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of chaotic dynamics in a recurrent neural network to control: hardware implementation into a novel autonomous roving robot.
    Li Y; Kurata S; Morita S; Shimizu S; Munetaka D; Nara S
    Biol Cybern; 2008 Sep; 99(3):185-96. PubMed ID: 18781321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Artificial Organic Control System for Mobile Robot Navigation in Assisted Living Using Vision- and Neural-Based Strategies.
    Ponce H; Moya-Albor E; Brieva J
    Comput Intell Neurosci; 2018; 2018():4189150. PubMed ID: 30627141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous learning in humanoid robotics through mental imagery.
    Di Nuovo AG; Marocco D; Di Nuovo S; Cangelosi A
    Neural Netw; 2013 May; 41():147-55. PubMed ID: 23122490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of neural network to humanoid robots-development of co-associative memory model.
    Itoh K; Miwa H; Takanobu H; Takanishi A
    Neural Netw; 2005; 18(5-6):666-73. PubMed ID: 16109473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.