These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26089961)

  • 1. Vaccination Control in a Stochastic SVIR Epidemic Model.
    Witbooi PJ; Muller GE; Van Schalkwyk GJ
    Comput Math Methods Med; 2015; 2015():271654. PubMed ID: 26089961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A state dependent pulse control strategy for a SIRS epidemic system.
    Nie LF; Teng ZD; Guo BZ
    Bull Math Biol; 2013 Oct; 75(10):1697-715. PubMed ID: 23812914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability analysis and optimal control of an SIR epidemic model with vaccination.
    Kar TK; Batabyal A
    Biosystems; 2011; 104(2-3):127-35. PubMed ID: 21315798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of a Stochastic Model of an SIR Epidemic with Vaccination.
    Witbooi PJ
    Acta Biotheor; 2017 Jun; 65(2):151-165. PubMed ID: 28324189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Class of Deterministic and Stochastic Fractional Epidemic Models with Vaccination.
    Xue T; Fan X; Zhu J
    Comput Math Methods Med; 2022; 2022():1797258. PubMed ID: 36017144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threshold dynamics of a time-delayed SEIRS model with pulse vaccination.
    Bai Z
    Math Biosci; 2015 Nov; 269():178-85. PubMed ID: 26408988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the exact measure of disease spread in stochastic epidemic models.
    Artalejo JR; Lopez-Herrero MJ
    Bull Math Biol; 2013 Jul; 75(7):1031-50. PubMed ID: 23620082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traveling waves for SVIR epidemic model with nonlocal dispersal.
    Zhang R; Liu SQ
    Math Biosci Eng; 2019 Feb; 16(3):1654-1682. PubMed ID: 30947437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global threshold dynamics of an SVIR model with age-dependent infection and relapse.
    Wang J; Lang J; Chen Y
    J Biol Dyn; 2017 Aug; 11(sup2):427-454. PubMed ID: 27593201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon.
    Guo WJ; Ye M; Li XN; Meyer-Baese A; Zhang QM
    Math Biosci Eng; 2019 May; 16(5):4107-4121. PubMed ID: 31499653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete stochastic metapopulation model with arbitrarily distributed infectious period.
    Hernandez-Ceron N; Chavez-Casillas JA; Feng Z
    Math Biosci; 2015 Mar; 261():74-82. PubMed ID: 25550286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threshold Dynamics in Stochastic SIRS Epidemic Models with Nonlinear Incidence and Vaccination.
    Wang L; Teng Z; Tang T; Li Z
    Comput Math Methods Med; 2017; 2017():7294761. PubMed ID: 28194223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for influenza with vaccination and antiviral treatment.
    Arino J; Brauer F; van den Driessche P; Watmough J; Wu J
    J Theor Biol; 2008 Jul; 253(1):118-30. PubMed ID: 18402981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and Numerical Simulations of a Stochastic SEIQR Epidemic System with Quarantine-Adjusted Incidence and Imperfect Vaccination.
    Li F; Meng X; Wang X
    Comput Math Methods Med; 2018; 2018():7873902. PubMed ID: 29675054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel SVIR epidemic model with jumps for understanding the dynamics of the spread of dual diseases.
    Alkhazzan A; Wang J; Nie Y; Khan H; Alzabut J
    Chaos; 2024 Sep; 34(9):. PubMed ID: 39288776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of SIR epidemic models with nonlinear incidence rate and treatment.
    Hu Z; Ma W; Ruan S
    Math Biosci; 2012 Jul; 238(1):12-20. PubMed ID: 22516532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extinction thresholds in deterministic and stochastic epidemic models.
    Allen LJ; Lahodny GE
    J Biol Dyn; 2012; 6():590-611. PubMed ID: 22873607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation.
    Xu J; Zhou Y
    Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
    Christen A; Maulén-Yañez MA; González-Olivares E; Curé M
    J Math Biol; 2018 Mar; 76(4):1005-1026. PubMed ID: 28752421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.
    Tanner MW; Sattenspiel L; Ntaimo L
    Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.