These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26089967)

  • 1. Adaptive Ridge Point Refinement for Seeds Detection in X-Ray Coronary Angiogram.
    Xiao R; Yang J; Ai D; Fan J; Liu Y; Wang G; Wang Y
    Comput Math Methods Med; 2015; 2015():502573. PubMed ID: 26089967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic vasculature identification in coronary angiograms by adaptive geometrical tracking.
    Xiao R; Yang J; Goyal M; Liu Y; Wang Y
    Comput Math Methods Med; 2013; 2013():796342. PubMed ID: 24232461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
    Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vessel segmentation and catheter detection in X-ray angiograms using superpixels.
    Fazlali HR; Karimi N; Soroushmehr SMR; Shirani S; Nallamothu BK; Ward KR; Samavi S; Najarian K
    Med Biol Eng Comput; 2018 Sep; 56(9):1515-1530. PubMed ID: 29399728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model-based consecutive scanline tracking method for extracting vascular networks from 2-D digital subtraction angiograms.
    Zou P; Chan P; Rockett P
    IEEE Trans Med Imaging; 2009 Feb; 28(2):241-9. PubMed ID: 19188111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation and Automatic Identification of Vasculature in Coronary Angiograms.
    Liu Y; Wan W; Zhang X; Liu S; Liu Y; Liu H; Zeng X; Wang W; Zhang Q
    Comput Math Methods Med; 2021; 2021():2747274. PubMed ID: 34659446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-guided extraction of coronary vessel structures in 2D X-ray angiograms.
    Sun SY; Wang P; Sun S; Chen T
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):594-602. PubMed ID: 25485428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking.
    Shoujun Z; Jian Y; Yongtian W; Wufan C
    Biomed Eng Online; 2010 Aug; 9():40. PubMed ID: 20727131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensional reconstruction of coronary arteries from two views.
    Sarwal A; Dhawan AP
    Comput Methods Programs Biomed; 2001 Apr; 65(1):25-43. PubMed ID: 11223149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA.
    Schaap M; van Walsum T; Neefjes L; Metz C; Capuano E; de Bruijne M; Niessen W
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1974-86. PubMed ID: 21708497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic segmentation of vessels from angiogram sequences using adaptive feature transformation.
    Tsai YC; Lee HJ; Yu-Chih Chen M
    Comput Biol Med; 2015 Jul; 62():239-53. PubMed ID: 25965578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved algorithm for vessel centerline tracking in coronary angiograms.
    Xu Y; Zhang H; Li H; Hu G
    Comput Methods Programs Biomed; 2007 Nov; 88(2):131-43. PubMed ID: 17919766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional fast-marching and multi-model strategy to extract coronary artery centerlines.
    Jia D; Zhuang X
    Comput Biol Med; 2019 May; 108():67-77. PubMed ID: 31003181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A shape-based segmentation algorithm for X-ray digital subtraction angiography images.
    Franchi D; Gallo P; Marsili L; Placidi G
    Comput Methods Programs Biomed; 2009 Jun; 94(3):267-78. PubMed ID: 19264373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of image-based method for extraction of coronary morphometry.
    Wischgoll T; Choy JS; Ritman EL; Kassab GS
    Ann Biomed Eng; 2008 Mar; 36(3):356-68. PubMed ID: 18228141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an automatic coronary artery segmentation algorithm.
    Fallavollita P; Cheriet F
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3037-40. PubMed ID: 17946540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic feature extraction of coronary artery motion using DSA image sequences.
    Puentes J; Roux C; Garreau M; Coatrieux JL
    IEEE Trans Med Imaging; 1998 Dec; 17(6):857-71. PubMed ID: 10048843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graph-based approach for spatio-temporal segmentation of coronary arteries in X-ray angiographic sequences.
    M'hiri F; Duong L; Desrosiers C; Leye M; Miró J; Cheriet M
    Comput Biol Med; 2016 Dec; 79():45-58. PubMed ID: 27744180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based morphological segmentation and labeling of coronary angiograms.
    Haris K; Efstratiadis SN; Maglaveras N; Pappas C; Gourassas J; Louridas G
    IEEE Trans Med Imaging; 1999 Oct; 18(10):1003-15. PubMed ID: 10628959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach.
    Metz CT; Schaap M; Weustink AC; Mollet NR; van Walsum T; Niessen WJ
    Med Phys; 2009 Dec; 36(12):5568-79. PubMed ID: 20095269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.