BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26090461)

  • 1. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications.
    Rees A; Powell LC; Chinga-Carrasco G; Gethin DT; Syverud K; Hill KE; Thomas DW
    Biomed Res Int; 2015; 2015():925757. PubMed ID: 26090461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings.
    Powell LC; Khan S; Chinga-Carrasco G; Wright CJ; Hill KE; Thomas DW
    Carbohydr Polym; 2016 Feb; 137():191-197. PubMed ID: 26686120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocelluloses - Nanotoxicology, Safety Aspects and 3D Bioprinting.
    Chinga-Carrasco G; Rosendahl J; Catalán J
    Adv Exp Med Biol; 2022; 1357():155-177. PubMed ID: 35583644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Cellulose Nanofibril/Casein-Based 3D Composite Hemostasis Scaffold for Potential Wound-Healing Application.
    Biranje SS; Sun J; Cheng L; Cheng Y; Shi Y; Yu S; Jiao H; Zhang M; Lu X; Han W; Wang Q; Zhang Z; Liu J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3792-3808. PubMed ID: 35037458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices.
    Chinga-Carrasco G
    Biomacromolecules; 2018 Mar; 19(3):701-711. PubMed ID: 29489338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofabrication of Cellulose-based Hydrogels for Advanced Wound Healing: A Special Emphasis on 3D Bioprinting.
    Tabatabaei Hosseini BS; Meadows K; Gabriel V; Hu J; Kim K
    Macromol Biosci; 2024 May; 24(5):e2300376. PubMed ID: 38031512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
    Chinga-Carrasco G; Syverud K
    J Biomater Appl; 2014 Sep; 29(3):423-32. PubMed ID: 24713295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting.
    Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS
    Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressings.
    Fratini C; Weaver E; Moroni S; Irwin R; Dallal Bashi YH; Uddin S; Casettari L; Wylie MP; Lamprou DA
    Biomater Adv; 2023 Oct; 153():213557. PubMed ID: 37441958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic and biomedical applications of nanocelluloses: A review of recent developments.
    Khorsandi D; Jenson S; Zarepour A; Khosravi A; Rabiee N; Iravani S; Zarrabi A
    Int J Biol Macromol; 2024 May; 268(Pt 2):131829. PubMed ID: 38677670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa.
    Jack AA; Nordli HR; Powell LC; Powell KA; Kishnani H; Johnsen PO; Pukstad B; Thomas DW; Chinga-Carrasco G; Hill KE
    Carbohydr Polym; 2017 Feb; 157():1955-1962. PubMed ID: 27987916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications-A Mini Review.
    Wang X; Wang Q; Xu C
    Bioengineering (Basel); 2020 Apr; 7(2):. PubMed ID: 32365578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting.
    Yadav C; Saini A; Zhang W; You X; Chauhan I; Mohanty P; Li X
    Int J Biol Macromol; 2021 Jan; 166():1586-1616. PubMed ID: 33186649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinting: opportunities for wound dressing development.
    Wang X; Wang Y; Teng Y; Shi J; Yang X; Ding Z; Guo X; Hou S; Lv Q
    Biomed Mater; 2023 Jul; 18(5):. PubMed ID: 37369219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering.
    Im S; Choe G; Seok JM; Yeo SJ; Lee JH; Kim WD; Lee JY; Park SA
    Int J Biol Macromol; 2022 Apr; 205():520-529. PubMed ID: 35217077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds.
    Ajdary R; Huan S; Zanjanizadeh Ezazi N; Xiang W; Grande R; Santos HA; Rojas OJ
    Biomacromolecules; 2019 Jul; 20(7):2770-2778. PubMed ID: 31117356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation.
    Mendoza DJ; Hossain L; Browne C; Raghuwanshi VS; Simon GP; Garnier G
    Carbohydr Polym; 2020 Oct; 245():116566. PubMed ID: 32718648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.