BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26090461)

  • 21. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application.
    Poonguzhali R; Basha SK; Kumari VS
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):111-120. PubMed ID: 28698076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Symbiotic culture of nanocellulose pellicle: A potential matrix for 3D bioprinting.
    Pillai MM; Tran HN; Sathishkumar G; Manimekalai K; Yoon J; Lim D; Noh I; Bhattacharyya A
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111552. PubMed ID: 33321616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel asymmetric chitosan/PVP/nanocellulose wound dressing: In vitro and in vivo evaluation.
    Poonguzhali R; Khaleel Basha S; Sugantha Kumari V
    Int J Biol Macromol; 2018 Jun; 112():1300-1309. PubMed ID: 29447972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of nanocellulose and its applications in wound dressing: A review.
    Yang C; Zhu Y; Tian Z; Zhang C; Han X; Jiang S; Liu K; Duan G
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):127997. PubMed ID: 37949262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells.
    Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K
    Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels.
    Chen Y; Xiong X; Liu X; Cui R; Wang C; Zhao G; Zhi W; Lu M; Duan K; Weng J; Qu S; Ge J
    J Mater Chem B; 2020 Jul; 8(25):5500-5514. PubMed ID: 32484194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D printing process of oxidized nanocellulose and gelatin scaffold.
    Xu X; Zhou J; Jiang Y; Zhang Q; Shi H; Liu D
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1498-1513. PubMed ID: 29716440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygenated Nanocellulose-A Material Platform for Antibacterial Wound Dressing Devices.
    Knutsen MF; Agrenius K; Ugland H; Petronis S; Haglerod C; Håkansson J; Chinga-Carrasco G
    ACS Appl Bio Mater; 2021 Oct; 4(10):7554-7562. PubMed ID: 35006698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular study of wound healing after using biosynthesized BNC/Fe
    Moniri M; Boroumand Moghaddam A; Azizi S; Abdul Rahim R; Zuhainis Saad W; Navaderi M; Arulselvan P; Mohamad R
    Int J Nanomedicine; 2018; 13():2955-2971. PubMed ID: 29861630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements.
    Pita-Vilar M; Concheiro A; Alvarez-Lorenzo C; Diaz-Gomez L
    Carbohydr Polym; 2023 Dec; 321():121298. PubMed ID: 37739531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carboxylated nanocellulose for wound healing applications - Increase of washing efficiency after chemical pre-treatment and stability of homogenized gels over 10 months.
    Chinga-Carrasco G; Pasquier E; Solberg A; Leirset I; Stevanic JS; Rosendahl J; Håkansson J
    Carbohydr Polym; 2023 Aug; 314():120923. PubMed ID: 37173022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications.
    Müller M; Öztürk E; Arlov Ø; Gatenholm P; Zenobi-Wong M
    Ann Biomed Eng; 2017 Jan; 45(1):210-223. PubMed ID: 27503606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs.
    Muthukrishnan L
    Carbohydr Polym; 2021 May; 260():117774. PubMed ID: 33712131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Fibril Length on the Ice Recrystallization Inhibition Activity of Nanocelluloses.
    Li T; Li M; Zhong Q; Wu T
    Carbohydr Polym; 2020 Jul; 240():116275. PubMed ID: 32475562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanocellulosic materials as bioinks for 3D bioprinting.
    Piras CC; Fernández-Prieto S; De Borggraeve WM
    Biomater Sci; 2017 Sep; 5(10):1988-1992. PubMed ID: 28829453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing.
    Bacakova L; Pajorova J; Bacakova M; Skogberg A; Kallio P; Kolarova K; Svorcik V
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30699947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.