These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
942 related articles for article (PubMed ID: 26090664)
1. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664 [TBL] [Abstract][Full Text] [Related]
2. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188 [TBL] [Abstract][Full Text] [Related]
3. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Zhang X; Wang W; Yu W; Xie Y; Zhang X; Zhang Y; Ma X Biotechnol Prog; 2005; 21(4):1289-96. PubMed ID: 16080713 [TBL] [Abstract][Full Text] [Related]
4. Development and characterization of a human three-dimensional chondrosarcoma culture for in vitro drug testing. Voissiere A; Jouberton E; Maubert E; Degoul F; Peyrode C; Chezal JM; Miot-Noirault É PLoS One; 2017; 12(7):e0181340. PubMed ID: 28704566 [TBL] [Abstract][Full Text] [Related]
5. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. Cribbes S; Kessel S; McMenemy S; Qiu J; Chan LL SLAS Discov; 2017 Jun; 22(5):547-557. PubMed ID: 28346096 [TBL] [Abstract][Full Text] [Related]
6. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. Wang JZ; Zhu YX; Ma HC; Chen SN; Chao JY; Ruan WD; Wang D; Du FG; Meng YZ Mater Sci Eng C Mater Biol Appl; 2016 May; 62():215-25. PubMed ID: 26952417 [TBL] [Abstract][Full Text] [Related]
7. Real-Time Apoptosis and Viability High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Qiu J; Chan LL SLAS Discov; 2018 Feb; 23(2):202-210. PubMed ID: 28915356 [TBL] [Abstract][Full Text] [Related]
8. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening. Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574 [TBL] [Abstract][Full Text] [Related]
9. High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads. Kochanek SJ; Close DA; Johnston PA Assay Drug Dev Technol; 2019 Jan; 17(1):17-36. PubMed ID: 30592624 [TBL] [Abstract][Full Text] [Related]
10. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
11. Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro. Akasov R; Zaytseva-Zotova D; Burov S; Leko M; Dontenwill M; Chiper M; Vandamme T; Markvicheva E Int J Pharm; 2016 Jun; 506(1-2):148-57. PubMed ID: 27107900 [TBL] [Abstract][Full Text] [Related]
12. Screening for compounds that induce apoptosis of cancer cells grown as multicellular spheroids. Herrmann R; Fayad W; Schwarz S; Berndtsson M; Linder S J Biomol Screen; 2008 Jan; 13(1):1-8. PubMed ID: 18040052 [TBL] [Abstract][Full Text] [Related]
13. Inhibitors of Na Song Y; Lee SY; Kim S; Choi I; Kim SH; Shum D; Heo J; Kim AR; Kim KM; Seo HR Sci Rep; 2020 Mar; 10(1):5318. PubMed ID: 32210281 [TBL] [Abstract][Full Text] [Related]
14. The multicellular tumor spheroid model for high-throughput cancer drug discovery. LaBarbera DV; Reid BG; Yoo BH Expert Opin Drug Discov; 2012 Sep; 7(9):819-30. PubMed ID: 22788761 [TBL] [Abstract][Full Text] [Related]
15. Development of an in vitro tumor spheroid culture model amenable to high-throughput testing of potential anticancer nanotherapeutics. Solomon MA; Lemera J; D'Souza GG J Liposome Res; 2016 Sep; 26(3):246-60. PubMed ID: 26780923 [TBL] [Abstract][Full Text] [Related]
16. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698 [TBL] [Abstract][Full Text] [Related]
17. Reproducibility of Uniform Spheroid Formation in 384-Well Plates: The Effect of Medium Evaporation. Das V; Fürst T; Gurská S; Džubák P; Hajdúch M J Biomol Screen; 2016 Oct; 21(9):923-30. PubMed ID: 27226477 [TBL] [Abstract][Full Text] [Related]
18. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Friedrich J; Ebner R; Kunz-Schughart LA Int J Radiat Biol; 2007; 83(11-12):849-71. PubMed ID: 18058370 [TBL] [Abstract][Full Text] [Related]
19. Cell cycle and apoptotic effects of SAHA are regulated by the cellular microenvironment in HCT116 multicellular tumour spheroids. Lobjois V; Frongia C; Jozan S; Truchet I; Valette A Eur J Cancer; 2009 Sep; 45(13):2402-11. PubMed ID: 19553104 [TBL] [Abstract][Full Text] [Related]
20. Robotic printing and drug testing of 384-well tumor spheroids. Ham SL; Thakuri PS; Tavana H Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2183-6. PubMed ID: 26736723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]