These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 26090945)
1. An Efficient Single Phase Method for the Extraction of Plasma Lipids. Alshehry ZH; Barlow CK; Weir JM; Zhou Y; McConville MJ; Meikle PJ Metabolites; 2015 Jun; 5(2):389-403. PubMed ID: 26090945 [TBL] [Abstract][Full Text] [Related]
2. UHPSFC/ESI-MS Analysis of Lipids. Lísa M; Holčapek M Methods Mol Biol; 2018; 1730():73-82. PubMed ID: 29363066 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography-Mass Spectrometry. Lísa M; Holčapek M Anal Chem; 2015 Jul; 87(14):7187-95. PubMed ID: 26095628 [TBL] [Abstract][Full Text] [Related]
4. Rapid and simple extraction of lipids from blood plasma and urine for liquid chromatography-tandem mass spectrometry. Bang DY; Byeon SK; Moon MH J Chromatogr A; 2014 Feb; 1331():19-26. PubMed ID: 24491523 [TBL] [Abstract][Full Text] [Related]
5. Separation of Glycolipids/Sphingolipids from Glycerophospholipids on TiO Huang Z; Wu Q; Lu H; Wang Y; Zhang Z Anal Chem; 2020 Aug; 92(16):11250-11259. PubMed ID: 32667194 [TBL] [Abstract][Full Text] [Related]
6. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Della Corte A; Chitarrini G; Di Gangi IM; Masuero D; Soini E; Mattivi F; Vrhovsek U Talanta; 2015 Aug; 140():52-61. PubMed ID: 26048823 [TBL] [Abstract][Full Text] [Related]
7. Development of lipidomic platform and phosphatidylcholine retention time index for lipid profiling of rosuvastatin treated human plasma. Choi JM; Kim TE; Cho JY; Lee HJ; Jung BH J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 944():157-65. PubMed ID: 24316528 [TBL] [Abstract][Full Text] [Related]
9. Optimization of lipid extraction and analytical protocols for UHPLC-ESI-HRMS-based lipidomic analysis of adherent mammalian cancer cells. Zhang H; Gao Y; Sun J; Fan S; Yao X; Ran X; Zheng C; Huang M; Bi H Anal Bioanal Chem; 2017 Sep; 409(22):5349-5358. PubMed ID: 28717896 [TBL] [Abstract][Full Text] [Related]
10. Comparison of simple monophasic versus classical biphasic extraction protocols for comprehensive UHPLC-MS/MS lipidomic analysis of Hela cells. Calderón C; Sanwald C; Schlotterbeck J; Drotleff B; Lämmerhofer M Anal Chim Acta; 2019 Feb; 1048():66-74. PubMed ID: 30598159 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Single Phase and Biphasic Extraction Protocols for Lipidomic Studies Using Human Plasma. Wong MWK; Braidy N; Pickford R; Sachdev PS; Poljak A Front Neurol; 2019; 10():879. PubMed ID: 31496985 [TBL] [Abstract][Full Text] [Related]
12. A simple and rapid method for extraction and measurement of circulating sphingolipids using LC-MS/MS: a targeted lipidomic analysis. Xu Y; Li H; Han Y; Wang T; Wang Y; Gong J; Gao K; Chen W; Li W; Zhang H; Wang J; Qiu X; Zhu T Anal Bioanal Chem; 2022 Mar; 414(6):2041-2054. PubMed ID: 35066602 [TBL] [Abstract][Full Text] [Related]
13. Analysis of sphingolipids in extracted human plasma using liquid chromatography electrospray ionization tandem mass spectrometry. Bui HH; Leohr JK; Kuo MS Anal Biochem; 2012 Apr; 423(2):187-94. PubMed ID: 22369892 [TBL] [Abstract][Full Text] [Related]
14. Ultra-high-performance liquid chromatography electrospray ionization tandem mass spectrometry for accurate analysis of glycerophospholipids and sphingolipids in drug resistance tumor cells. Li L; Wang L; Shangguan D; Wei Y; Han J; Xiong S; Zhao Z J Chromatogr A; 2015 Feb; 1381():140-8. PubMed ID: 25614189 [TBL] [Abstract][Full Text] [Related]
15. Optimization of a single phase method for lipid extraction from milk. Liu Z; Rochfort S; Cocks BG J Chromatogr A; 2016 Aug; 1458():145-9. PubMed ID: 27372415 [TBL] [Abstract][Full Text] [Related]
16. Assessment of human plasma and urine sample preparation for reproducible and high-throughput UHPLC-MS clinical metabolic phenotyping. Southam AD; Haglington LD; Najdekr L; Jankevics A; Weber RJM; Dunn WB Analyst; 2020 Oct; 145(20):6511-6523. PubMed ID: 32760982 [TBL] [Abstract][Full Text] [Related]
17. Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive. Monnin C; Ramrup P; Daigle-Young C; Vuckovic D Rapid Commun Mass Spectrom; 2018 Feb; 32(3):201-211. PubMed ID: 29105990 [TBL] [Abstract][Full Text] [Related]
18. Single-Step Extraction Coupled with Targeted HILIC-MS/MS Approach for Comprehensive Analysis of Human Plasma Lipidome and Polar Metabolome. Medina J; van der Velpen V; Teav T; Guitton Y; Gallart-Ayala H; Ivanisevic J Metabolites; 2020 Dec; 10(12):. PubMed ID: 33276464 [TBL] [Abstract][Full Text] [Related]
19. Improving Lipidomic Coverage Using UPLC-ESI-Q-TOF-MS for Marine Shellfish by Optimizing the Mobile Phase and Resuspension Solvents. Zhang YY; Liu YX; Zhou Z; Zhou DY; Du M; Zhu BW; Qin L J Agric Food Chem; 2019 Aug; 67(31):8677-8688. PubMed ID: 31293164 [TBL] [Abstract][Full Text] [Related]
20. Lipidomic analysis of prostanoids by liquid chromatography-electrospray tandem mass spectrometry. Nicolaou A; Masoodi M; Mir A Methods Mol Biol; 2009; 579():271-86. PubMed ID: 19763481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]