These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26090948)

  • 21. Organic wastes to enhance phyto-treatment of diesel-contaminated soil.
    Dadrasnia A; Agamuthu P
    Waste Manag Res; 2013 Nov; 31(11):1133-9. PubMed ID: 24025373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil.
    Asemoloye MD; Ahmad R; Jonathan SG
    Chemosphere; 2017 Nov; 187():1-10. PubMed ID: 28787637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial succession in oil-contaminated soil under phytoremediation with poplars.
    Lopez-Echartea E; Strejcek M; Mukherjee S; Uhlik O; Yrjälä K
    Chemosphere; 2020 Mar; 243():125242. PubMed ID: 31995861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An ecological microsystem to treat waste oil contaminated soil: Using phytoremediation assisted by fungi and local compost, on a mixed-contaminant site, in a cold climate.
    Robichaud K; Stewart K; Labrecque M; Hijri M; Cherewyk J; Amyot M
    Sci Total Environ; 2019 Jul; 672():732-742. PubMed ID: 30974363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.
    Mohsenzadeh F; Nasseri S; Mesdaghinia A; Nabizadeh R; Zafari D; Khodakaramian G; Chehregani A
    Ecotoxicol Environ Saf; 2010 May; 73(4):613-9. PubMed ID: 19932506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phyto-enhanced remediation of soil co-contaminated with lead and diesel fuel using biowaste and Dracaena reflexa: A laboratory study.
    Dadrasnia A; Pariatamby A
    Waste Manag Res; 2016 Mar; 34(3):246-53. PubMed ID: 26675494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Microbiological characteristics of phytoremediation plant root-soil interface for petroleum contaminated soil].
    Lin X; Li PJ; Sun TH; Li XJ; Sun LN
    Ying Yong Sheng Tai Xue Bao; 2007 Mar; 18(3):607-12. PubMed ID: 17552201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoremediation of toxic aromatic pollutants from soil.
    Singh OV; Jain RK
    Appl Microbiol Biotechnol; 2003 Dec; 63(2):128-35. PubMed ID: 12925865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of agronomic practices on phytoremediation of an aged PAH-contaminated soil.
    Olson PE; Castro A; Joern M; Duteau NM; Pilon-Smits E; Reardon KF
    J Environ Qual; 2008; 37(4):1439-46. PubMed ID: 18574175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons.
    Cook RL; Hesterberg D
    Int J Phytoremediation; 2013; 15(9):844-60. PubMed ID: 23819280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment.
    Peng S; Zhou Q; Cai Z; Zhang Z
    J Hazard Mater; 2009 Sep; 168(2-3):1490-6. PubMed ID: 19346069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.
    Ugochukwu UC; Fialips CI
    Chemosphere; 2017 May; 174():28-38. PubMed ID: 28157606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Waste management and contaminated site remediation practices after oil spill: a case study.
    Oliveira FJ; da Rocha Calixto RO; Felippe CE; de Franca FP
    Waste Manag Res; 2013 Dec; 31(12):1190-4. PubMed ID: 24163378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decontamination of metals and polycyclic aromatic hydrocarbons from slag-polluted soil.
    Bisone S; Mercier G; Blais JF
    Environ Technol; 2013; 34(17-20):2633-48. PubMed ID: 24527625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of compost amendment on pyrene availability from artificially spiked soil to two subspecies of Cucurbita pepo.
    Kobayashi T; Navarro RR; Tatsumi K; Iimura Y
    Sci Total Environ; 2008 Oct; 404(1):1-9. PubMed ID: 18632137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons.
    Steliga T; Jakubowicz P; Kapusta P
    Bioresour Technol; 2012 Dec; 125():1-10. PubMed ID: 23018157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inorganic nutrient utilisation by "adapted" Pseudomonas putida strain used in the bioremediation of agricultural soil polluted with crude petroleum.
    Nwachukwu SC; James P; Gurney TR
    J Environ Biol; 2001 Jul; 22(3):153-62. PubMed ID: 12017254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytoremediation of crude oil contaminated soil using nut grass, Cyperus rotundus.
    Basumatary B; Saikia R; Bordoloi S
    J Environ Biol; 2012 Sep; 33(5):891-6. PubMed ID: 23734455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion.
    Pawlik M; Piotrowska-Seget Z
    J Toxicol Environ Health A; 2015; 78(13-14):860-70. PubMed ID: 26167752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of hemoglobin in hemoglobin-based remediation of the crude oil-contaminated soil.
    Hong JK; Jho EH; Choi HS; Kang G
    Sci Total Environ; 2018 Jun; 627():1174-1181. PubMed ID: 30857082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.