BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 26090958)

  • 1. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.
    Wang Z; Yang Q; Li T; Cong P
    PLoS One; 2015; 10(6):e0128334. PubMed ID: 26090958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. POODLE: tools predicting intrinsically disordered regions of amino acid sequence.
    Shimizu K
    Methods Mol Biol; 2014; 1137():131-45. PubMed ID: 24573479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DomHR: accurately identifying domain boundaries in proteins using a hinge region strategy.
    Zhang XY; Lu LJ; Song Q; Yang QQ; Li DP; Sun JM; Li TH; Cong PS
    PLoS One; 2013; 8(4):e60559. PubMed ID: 23593247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of intrinsic disorder in proteins using MFDp2.
    Mizianty MJ; Uversky V; Kurgan L
    Methods Mol Biol; 2014; 1137():147-62. PubMed ID: 24573480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.
    Sharma R; Raicar G; Tsunoda T; Patil A; Sharma A
    Bioinformatics; 2018 Jun; 34(11):1850-1858. PubMed ID: 29360926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins.
    Basu S; Söderquist F; Wallner B
    J Comput Aided Mol Des; 2017 May; 31(5):453-466. PubMed ID: 28365882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MoRFPred-plus: Computational Identification of MoRFs in Protein Sequences using Physicochemical Properties and HMM profiles.
    Sharma R; Bayarjargal M; Tsunoda T; Patil A; Sharma A
    J Theor Biol; 2018 Jan; 437():9-16. PubMed ID: 29042212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.
    Deng X; Gumm J; Karki S; Eickholt J; Cheng J
    Int J Mol Sci; 2015 Jul; 16(7):15384-404. PubMed ID: 26198229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of protein disorder prediction programs on amino acid substitutions.
    Ali H; Urolagin S; Gurarslan Ö; Vihinen M
    Hum Mutat; 2014 Jul; 35(7):794-804. PubMed ID: 24753228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields.
    Wang S; Weng S; Ma J; Tang Q
    Int J Mol Sci; 2015 Jul; 16(8):17315-30. PubMed ID: 26230689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epitope distribution in ordered and disordered protein regions - part A. T-cell epitope frequency, affinity and hydropathy.
    Mitić NS; Pavlović MD; Jandrlić DR
    J Immunol Methods; 2014 Apr; 406():83-103. PubMed ID: 24614036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Conformational Disorder.
    Lieutaud P; Ferron F; Longhi S
    Methods Mol Biol; 2016; 1415():265-99. PubMed ID: 27115638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput prediction of disordered moonlighting regions in protein sequences.
    Meng F; Kurgan L
    Proteins; 2018 Oct; 86(10):1097-1110. PubMed ID: 30099775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Similar Patterns of Structural Flexibility in Proteins by Disorder Prediction and Dynamic Programming.
    Petrovich A; Borne A; Uversky VN; Xue B
    Int J Mol Sci; 2015 Jun; 16(6):13829-49. PubMed ID: 26086829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurately Predicting Disordered Regions of Proteins Using Rosetta ResidueDisorder Application.
    Kim SS; Seffernick JT; Lindert S
    J Phys Chem B; 2018 Apr; 122(14):3920-3930. PubMed ID: 29595057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Prediction of Intrinsic Disorder in Protein Sequences with the disCoP Meta-predictor.
    Oldfield CJ; Fan X; Wang C; Dunker AK; Kurgan L
    Methods Mol Biol; 2020; 2141():21-35. PubMed ID: 32696351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational identification of MoRFs in protein sequences.
    Malhis N; Gsponer J
    Bioinformatics; 2015 Jun; 31(11):1738-44. PubMed ID: 25637562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction.
    Liu Y; Wang X; Liu B
    Brief Bioinform; 2019 Jan; 20(1):330-346. PubMed ID: 30657889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering MoRFs by trisecting intrinsically disordered protein sequence into terminals and middle regions.
    Sharma R; Sharma A; Patil A; Tsunoda T
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):378. PubMed ID: 30717652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DisPredict: A Predictor of Disordered Protein Using Optimized RBF Kernel.
    Iqbal S; Hoque MT
    PLoS One; 2015; 10(10):e0141551. PubMed ID: 26517719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.