BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26091042)

  • 1. A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.
    Niphakis MJ; Lum KM; Cognetta AB; Correia BE; Ichu TA; Olucha J; Brown SJ; Kundu S; Piscitelli F; Rosen H; Cravatt BF
    Cell; 2015 Jun; 161(7):1668-80. PubMed ID: 26091042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Protein Targets of Bioactive Small Molecules Using Lipid-Based Chemical Proteomics.
    Lum KM; Sato Y; Beyer BA; Plaisted WC; Anglin JL; Lairson LL; Cravatt BF
    ACS Chem Biol; 2017 Oct; 12(10):2671-2681. PubMed ID: 28930429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the lipid droplet proteome of a clonal insulin-producing β-cell line (INS-1 832/13).
    Larsson S; Resjö S; Gomez MF; James P; Holm C
    J Proteome Res; 2012 Feb; 11(2):1264-73. PubMed ID: 22268682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
    Wang Y; Dix MM; Bianco G; Remsberg JR; Lee HY; Kalocsay M; Gygi SP; Forli S; Vite G; Lawrence RM; Parker CG; Cravatt BF
    Nat Chem; 2019 Dec; 11(12):1113-1123. PubMed ID: 31659311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots.
    Roberts AM; Ward CC; Nomura DK
    Curr Opin Biotechnol; 2017 Feb; 43():25-33. PubMed ID: 27568596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proteome-wide atlas of lysine-reactive chemistry.
    Abbasov ME; Kavanagh ME; Ichu TA; Lazear MR; Tao Y; Crowley VM; Am Ende CW; Hacker SM; Ho J; Dix MM; Suciu R; Hayward MM; Kiessling LL; Cravatt BF
    Nat Chem; 2021 Nov; 13(11):1081-1092. PubMed ID: 34504315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity.
    Franz AK; Danielewicz MA; Wong DM; Anderson LA; Boothe JR
    ACS Chem Biol; 2013 May; 8(5):1053-62. PubMed ID: 23521767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of nucleobindin 1 (NUCB1) in pancreatic islets and other endocrine tissues.
    Williams P; Tulke S; Ilegems E; Berggren PO; Broberger C
    Cell Tissue Res; 2014 Nov; 358(2):331-42. PubMed ID: 25038744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipidomic analysis of signaling pathways.
    Wakelam MJ; Pettitt TR; Postle AD
    Methods Enzymol; 2007; 432():233-46. PubMed ID: 17954220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent effect of in vivo inflammation on eicosanoid and endocannabinoid levels in plasma, liver, ileum and adipose tissue in C57BL/6 mice fed a fish-oil diet.
    Balvers MG; Verhoeckx KC; Meijerink J; Bijlsma S; Rubingh CM; Wortelboer HM; Witkamp RF
    Int Immunopharmacol; 2012 Jun; 13(2):204-14. PubMed ID: 22498761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of mammalian protein complexes by lentiviral-based affinity purification and mass spectrometry.
    Ni Z; Olsen JB; Emili A; Greenblatt JF
    Methods Mol Biol; 2011; 781():31-45. PubMed ID: 21877275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting bioorthogonal chemistry to elucidate protein-lipid binding interactions and other biological roles of phospholipids.
    Best MD; Rowland MM; Bostic HE
    Acc Chem Res; 2011 Sep; 44(9):686-98. PubMed ID: 21548554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying small molecule microarrays and resulting affinity probe cocktails for proteome profiling of mammalian cell lysates.
    Shi H; Uttamchandani M; Yao SQ
    Chem Asian J; 2011 Oct; 6(10):2803-15. PubMed ID: 21898842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing lipid-protein interactions using lipid microarrays.
    Feng L
    Prostaglandins Other Lipid Mediat; 2005 Sep; 77(1-4):158-67. PubMed ID: 16099400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism.
    Casanovas A; Sprenger RR; Tarasov K; Ruckerbauer DE; Hannibal-Bach HK; Zanghellini J; Jensen ON; Ejsing CS
    Chem Biol; 2015 Mar; 22(3):412-25. PubMed ID: 25794437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment.
    Salentin S; Haupt VJ; Daminelli S; Schroeder M
    Prog Biophys Mol Biol; 2014; 116(2-3):174-86. PubMed ID: 24923864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast "N"-hybrid systems for protein-protein and drug-protein interaction discovery.
    Rezwan M; Auerbach D
    Methods; 2012 Aug; 57(4):423-9. PubMed ID: 22728036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting protein-small molecule interactions using fluorous small-molecule microarrays.
    Vegas AJ; Koehler AN
    Methods Mol Biol; 2010; 669():43-55. PubMed ID: 20857356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.