These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26091070)

  • 1. Analysis of alternative pathways for reducing nitrogen oxide emissions.
    Loughlin DH; Kaufman KR; Lenox CS; Hubbell BJ
    J Air Waste Manag Assoc; 2015 Sep; 65(9):1083-93. PubMed ID: 26091070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expected ozone benefits of reducing nitrogen oxide (NO
    Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR
    J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China.
    Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ
    Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precursor reductions and ground-level ozone in the Continental United States.
    Hidy GM; Blanchard CL
    J Air Waste Manag Assoc; 2015 Oct; 65(10):1261-82. PubMed ID: 26252366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China.
    Lu X; Yao T; Li Y; Fung JCH; Lau AKH
    Environ Pollut; 2016 May; 212():135-146. PubMed ID: 26845361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions.
    Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R
    J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale air quality impacts of distributed power generation facilities.
    Olaguer EP; Knipping E; Shaw S; Ravindran S
    J Air Waste Manag Assoc; 2016 Aug; 66(8):795-806. PubMed ID: 27191342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.
    Loughlin DH; Macpherson AJ; Kaufman KR; Keaveny BN
    J Air Waste Manag Assoc; 2017 Oct; 67(10):1115-1125. PubMed ID: 28613998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed-dependent emission of air pollutants from gasoline-powered passenger cars.
    Jung S; Lee M; Kim J; Lyu Y; Park J
    Environ Technol; 2011; 32(11-12):1173-81. PubMed ID: 21970159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air quality in Yanbu, Saudi Arabia.
    Khalil MA; Butenhoff CL; Porter WC; Almazroui M; Alkhalaf A; Al-Sahafi MS
    J Air Waste Manag Assoc; 2016 Apr; 66(4):341-55. PubMed ID: 26671649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of deposit control additives on nitrogen oxides emissions from spark ignition engines (case study: Tehran).
    Bidhendi GN; Zand AD; Tabrizi AM; Pezeshk H; Baghvand A
    Pak J Biol Sci; 2007 Apr; 10(8):1349-53. PubMed ID: 19069943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Health benefits of vehicle electrification through air pollution in Shanghai, China.
    Zhang S; Jiang Y; Zhang S; Choma EF
    Sci Total Environ; 2024 Mar; 914():169859. PubMed ID: 38190893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of mobile and passive badge air monitoring data for NO
    Xu W; Riley EA; Austin E; Sasakura M; Schaal L; Gould TR; Hartin K; Simpson CD; Sampson PD; Yost MG; Larson TV; Xiu G; Vedal S
    J Expo Sci Environ Epidemiol; 2017 Mar; 27(2):184-192. PubMed ID: 27005742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upgrading Passenger Vehicle Emission Standard Helps to Reduce China's Air Pollution Risk from Uncertainty in Electrification.
    Xie H; Chen B; Dai M; Han Z; Bai Y; Xie W; Wang Y
    Environ Sci Technol; 2024 Mar; 58(12):5325-5335. PubMed ID: 38409740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air quality and climate connections.
    Fiore AM; Naik V; Leibensperger EM
    J Air Waste Manag Assoc; 2015 Jun; 65(6):645-85. PubMed ID: 25976481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential impacts of electric vehicles on air quality in Taiwan.
    Li N; Chen JP; Tsai IC; He Q; Chi SY; Lin YC; Fu TM
    Sci Total Environ; 2016 Oct; 566-567():919-928. PubMed ID: 27285533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the emissions and air quality impacts of biomass and biogas use in California.
    Carreras-Sospedra M; Williams R; Dabdub D
    J Air Waste Manag Assoc; 2016 Feb; 66(2):134-50. PubMed ID: 26378722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional ozone impacts of increased natural gas use in the Texas power sector and development in the Eagle Ford shale.
    Pacsi AP; Kimura Y; McGaughey G; McDonald-Buller EC; Allen DT
    Environ Sci Technol; 2015 Mar; 49(6):3966-73. PubMed ID: 25723953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.