These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26091255)

  • 1. Morphological Evolution of Physical Robots through Model-Free Phenotype Development.
    Brodbeck L; Hauser S; Iida F
    PLoS One; 2015; 10(6):e0128444. PubMed ID: 26091255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.
    Vujovic V; Rosendo A; Brodbeck L; Iida F
    Artif Life; 2017; 23(2):169-185. PubMed ID: 28513207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The trade-off between morphology and control in the co-optimized design of robots.
    Rosendo A; von Atzigen M; Iida F
    PLoS One; 2017; 12(10):e0186107. PubMed ID: 29023482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reality-Assisted Evolution of Soft Robots through Large-Scale Physical Experimentation: A Review.
    Howison T; Hauser S; Hughes J; Iida F
    Artif Life; 2020; 26(4):484-506. PubMed ID: 33493077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving mobile robots in simulated and real environments.
    Miglino O; Lund HH; Nolfi S
    Artif Life; 1995; 2(4):417-34. PubMed ID: 8942055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological computation of multi-gaited robot locomotion based on free vibration.
    Reis M; Yu X; Maheshwari N; Iida F
    Artif Life; 2013; 19(1):97-114. PubMed ID: 23186346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automating the Incremental Evolution of Controllers for Physical Robots.
    Faíña A; Jacobsen LT; Risi S
    Artif Life; 2017; 23(2):142-168. PubMed ID: 28513203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
    Klaus G; Glette K; Høvin M
    Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolving Soft Locomotion in Aquatic and Terrestrial Environments: Effects of Material Properties and Environmental Transitions.
    Corucci F; Cheney N; Giorgio-Serchi F; Bongard J; Laschi C
    Soft Robot; 2018 Aug; 5(4):475-495. PubMed ID: 29985740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-scale soft-bodied robot with multimodal locomotion.
    Hu W; Lum GZ; Mastrangeli M; Sitti M
    Nature; 2018 Feb; 554(7690):81-85. PubMed ID: 29364873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolving a Behavioral Repertoire for a Walking Robot.
    Cully A; Mouret JB
    Evol Comput; 2016; 24(1):59-88. PubMed ID: 25585055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics: self-reproducing machines.
    Zykov V; Mytilinaios E; Adams B; Lipson H
    Nature; 2005 May; 435(7039):163-4. PubMed ID: 15889080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Scaffolding Accelerates the Evolution of Robot Behavior.
    Buckingham D; Bongard J
    Artif Life; 2017; 23(3):351-373. PubMed ID: 28786727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network.
    Guo H; Meng Y; Jin Y
    Biosystems; 2009 Dec; 98(3):193-203. PubMed ID: 19446001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior Trees for Evolutionary Robotics.
    Scheper KY; Tijmons S; de Visser CC; de Croon GC
    Artif Life; 2016; 22(1):23-48. PubMed ID: 26606468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.