These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26091397)

  • 21. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive.
    Kim R; Nam Y
    J Neural Eng; 2015 Apr; 12(2):026010. PubMed ID: 25738544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Advanced research in the retinal prosthesis].
    Zou YY; Wang JT; Li XR
    Zhonghua Yan Ke Za Zhi; 2009 Nov; 45(11):1052-4. PubMed ID: 20137426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microelectrode Array With Integrated Pneumatic Channels for Dynamic Control of Electrode Position in Retinal Implants.
    Xu Y; Pang S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2292-2298. PubMed ID: 34705653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording.
    Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G
    Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-density intracortical microelectrode arrays with multiple metallization layers for fine-resolution neuromonitoring and neurostimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):869-79. PubMed ID: 24122564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative study on fabrication techniques for on-chip microelectrodes.
    Temiz Y; Ferretti A; Leblebici Y; Guiducci C
    Lab Chip; 2012 Nov; 12(22):4920-8. PubMed ID: 23042440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkanethiolate self-assembled monolayers as functional spacers to resist protein adsorption upon Au-coated nerve microelectrode.
    Chang CH; Liao JD; Chen JJ; Ju MS; Lin CC
    Langmuir; 2004 Dec; 20(26):11656-63. PubMed ID: 15595795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study.
    Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH
    Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advancements in fabrication process of microelectrode array for a retinal prosthesis using Liquid Crystal Polymer (LCP).
    Jeong J; Shin S; Lee GJ; Gwon TM; Park JH; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5295-8. PubMed ID: 24110931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conducting polymer electrodes for visual prostheses.
    Green RA; Devillaine F; Dodds C; Matteucci P; Chen S; Byrnes-Preston P; Poole-Warren LA; Lovell NH; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6769-72. PubMed ID: 21095836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Computational Study of Graphene as a Prospective Material for Microelectrodes in Retinal Prosthesis and Electric Crosstalk Analysis.
    Asghar SA; Pal P; Nazeer K; Mahadevappa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2291-2294. PubMed ID: 33018465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Subretinal 3D Microelectrodes with Hexagonal Arrangement.
    Seo HW; Kim N; Kim S
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32365472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed retinal nerve cell growth for use in a retinal prosthesis interface.
    Leng T; Wu P; Mehenti NZ; Bent SF; Marmor MF; Blumenkranz MS; Fishman HA
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4132-7. PubMed ID: 15505066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level.
    Susloparova A; Koppenhöfer D; Law JK; Vu XT; Ingebrandt S
    Lab Chip; 2015 Feb; 15(3):668-79. PubMed ID: 25412224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quasi-monopolar electrical stimulation of the retina: a computational modelling study.
    Abramian M; Lovell NH; Habib A; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2014 Apr; 11(2):025002. PubMed ID: 24556561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.