These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26091397)

  • 41. A high-density microelectrode-tissue-microelectrode sandwich platform for application of retinal circuit study.
    Yang F; Yang CH; Wang FM; Cheng YT; Teng CC; Lee LJ; Yang CH; Fan LS
    Biomed Eng Online; 2015 Nov; 14():109. PubMed ID: 26611649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Post-implantation impedance spectroscopy of subretinal micro-electrode arrays, OCT imaging and numerical simulation: towards a more precise neuroprosthesis monitoring tool.
    Pham P; Roux S; Matonti F; Dupont F; Agache V; Chavane F
    J Neural Eng; 2013 Aug; 10(4):046002. PubMed ID: 23723150
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation.
    Rui YF; Liu JQ; Yang B; Li KY; Yang CS
    Biomed Microdevices; 2012 Apr; 14(2):367-73. PubMed ID: 22124887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mosaic electrical characteristics of the skin.
    Panescu D; Cohen KP; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1993 May; 40(5):434-9. PubMed ID: 8225332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling of the cell-electrode interface noise for microelectrode arrays.
    Guo J; Yuan J; Chan M
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):605-13. PubMed ID: 23853261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1072-82. PubMed ID: 24876130
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis.
    Shivdasani MN; Sinclair NC; Dimitrov PN; Varsamidis M; Ayton LN; Luu CD; Perera T; McDermott HJ; Blamey PJ;
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6467-81. PubMed ID: 25205858
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].
    Wang W; Qiao Q; Gao W; Wu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1255-9, 1271. PubMed ID: 25868240
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new approach towards a minimal invasive retina implant.
    Gerding H
    J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-Cost Impedance Camera for Cell Distribution Monitoring.
    Tang B; Liu M; Dietzel A
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832047
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene microelectrode arrays for neural activity detection.
    Du X; Wu L; Cheng J; Huang S; Cai Q; Jin Q; Zhao J
    J Biol Phys; 2015 Sep; 41(4):339-47. PubMed ID: 25712492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spirally oriented Au microelectrode array sensor for detection of Hg (II).
    Huan TN; Hung le Q; Ha VT; Anh NH; Van Khai T; Shim KB; Chung H
    Talanta; 2012 May; 94():284-8. PubMed ID: 22608449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis.
    Bae SH; Che JH; Seo JM; Jeong J; Kim ET; Lee SW; Koo KI; Suaning GJ; Lovell NH; Cho DI; Kim SJ; Chung H
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2653-7. PubMed ID: 22427592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microelectrodes with gold nanoparticles and self-assembled monolayers for in vivo recording of striatal dopamine.
    Tsai TC; Guo CX; Han HZ; Li YT; Huang YZ; Li CM; Chen JJ
    Analyst; 2012 Jun; 137(12):2813-20. PubMed ID: 22577657
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Signal distortion from microelectrodes in clinical EEG acquisition systems.
    Stacey WC; Kellis S; Patel PR; Greger B; Butson CR
    J Neural Eng; 2012 Oct; 9(5):056007. PubMed ID: 22878608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The application of flexible neural microelectrode on retinal prosthesis].
    Hui C; Li B; Xu A; Xing Y; Li G; Zhao J; Ren Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):938-40. PubMed ID: 18788313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.