These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 26091423)
1. Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. Zhao J; Lu Z; Wang H; Liu W; Lee HW; Yan K; Zhuo D; Lin D; Liu N; Cui Y J Am Chem Soc; 2015 Jul; 137(26):8372-5. PubMed ID: 26091423 [TBL] [Abstract][Full Text] [Related]
2. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Zhao J; Lu Z; Liu N; Lee HW; McDowell MT; Cui Y Nat Commun; 2014 Oct; 5():5088. PubMed ID: 25277107 [TBL] [Abstract][Full Text] [Related]
3. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Zhao J; Lee HW; Sun J; Yan K; Liu Y; Liu W; Lu Z; Lin D; Zhou G; Cui Y Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7408-13. PubMed ID: 27313206 [TBL] [Abstract][Full Text] [Related]
4. Interphase Engineering Enhanced Electro-chemical Stability of Prelithiated Anode. Xu S; Fang Q; Wu J; Weng S; Li X; Liu Q; Wang Q; Yu X; Chen L; Li Y; Wang Z; Wang X Small; 2024 Jan; 20(2):e2305639. PubMed ID: 37658504 [TBL] [Abstract][Full Text] [Related]
5. Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density. Cao Z; Xu P; Zhai H; Du S; Mandal J; Dontigny M; Zaghib K; Yang Y Nano Lett; 2016 Nov; 16(11):7235-7240. PubMed ID: 27696883 [TBL] [Abstract][Full Text] [Related]
6. Insight into the Enforced Stability of the Solid Electrolyte Interphase on the Graphite Anode by Prelithiation. Li C; Deng Y; Wang K; Li S; Meng X; Chen M; Liao Y; Xing L; Xu MQ; Li W J Phys Chem Lett; 2024 Sep; 15(35):9105-9112. PubMed ID: 39197150 [TBL] [Abstract][Full Text] [Related]
7. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Zhao J; Liao L; Shi F; Lei T; Chen G; Pei A; Sun J; Yan K; Zhou G; Xie J; Liu C; Li Y; Liang Z; Bao Z; Cui Y J Am Chem Soc; 2017 Aug; 139(33):11550-11558. PubMed ID: 28743184 [TBL] [Abstract][Full Text] [Related]
8. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090 [TBL] [Abstract][Full Text] [Related]
9. Impact of Electrolyte on Direct-Contact Prelithiation of Silicon-Graphite Anodes in Lithium-Ion Cells with High-Nickel Cathodes. Yi M; Cui Z; Manthiram A ACS Appl Mater Interfaces; 2024 Aug; 16(32):42270-42282. PubMed ID: 39099288 [TBL] [Abstract][Full Text] [Related]
10. Yang Y; Wang J; Kim SC; Zhang W; Peng Y; Zhang P; Vilá RA; Ma Y; Jeong YK; Cui Y Nano Lett; 2023 Jun; 23(11):5042-5047. PubMed ID: 37236151 [TBL] [Abstract][Full Text] [Related]
11. Metal/LiF/Li Du J; Wang W; Sheng Eng AY; Liu X; Wan M; Seh ZW; Sun Y Nano Lett; 2020 Jan; 20(1):546-552. PubMed ID: 31775001 [TBL] [Abstract][Full Text] [Related]
12. Prelithiation Reagents and Strategies on High Energy Lithium-Ion Batteries. Xin C; Gao J; Luo R; Zhou W Chemistry; 2022 Apr; 28(23):e202104282. PubMed ID: 35137468 [TBL] [Abstract][Full Text] [Related]
13. Practical Prelithiation of 4.5 V LiCoO Zhao X; Yi R; Zheng L; Liu Y; Li Z; Zeng L; Shen Y; Lu W; Chen L Small; 2022 Mar; 18(9):e2106394. PubMed ID: 34908238 [TBL] [Abstract][Full Text] [Related]
14. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422 [TBL] [Abstract][Full Text] [Related]
15. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. Sun Y; Lee HW; Zheng G; Seh ZW; Sun J; Li Y; Cui Y Nano Lett; 2016 Feb; 16(2):1497-501. PubMed ID: 26784146 [TBL] [Abstract][Full Text] [Related]
16. Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. Wang F; Wang B; Li J; Wang B; Zhou Y; Wang D; Liu H; Dou S ACS Nano; 2021 Feb; 15(2):2197-2218. PubMed ID: 33570903 [TBL] [Abstract][Full Text] [Related]
17. High-Energy-Density and Long-Lifetime Lithium-Ion Battery Enabled by a Stabilized Li Zheng L; Yu A; Li G; Zhang J ACS Appl Mater Interfaces; 2022 Aug; 14(34):38706-38716. PubMed ID: 35993675 [TBL] [Abstract][Full Text] [Related]
18. Unblocked Electron Channels Enable Efficient Contact Prelithiation for Lithium-Ion Batteries. Yue XY; Yao YX; Zhang J; Yang SY; Li Z; Yan C; Zhang Q Adv Mater; 2022 Apr; 34(15):e2110337. PubMed ID: 35141957 [TBL] [Abstract][Full Text] [Related]
19. A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. Rao Z; Wu J; He B; Chen W; Wang H; Fu Q; Huang Y ACS Appl Mater Interfaces; 2021 Aug; 13(32):38194-38201. PubMed ID: 34342445 [TBL] [Abstract][Full Text] [Related]
20. Hollow Structured Silicon Anodes with Stabilized Solid Electrolyte Interphase Film for Lithium-Ion Batteries. Lv Q; Liu Y; Ma T; Zhu W; Qiu X ACS Appl Mater Interfaces; 2015 Oct; 7(42):23501-6. PubMed ID: 26402521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]