These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2609152)

  • 1. Effects of cadmium on a microbial food chain, Chlamydomonas reinhardii and Tetrahymena vorax.
    Lawrence SG; Holoka MH; Hamilton RD
    Sci Total Environ; 1989 Nov; 87-88():381-95. PubMed ID: 2609152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain).
    Aguilera A; Amils R
    Aquat Toxicol; 2005 Nov; 75(4):316-29. PubMed ID: 16225936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Aroclor 1242 (a polychlorinated biphenyl) and DDT on cultures of an alga, protozoan, daphnid, ostracod, and guppy.
    Morgan JR
    Bull Environ Contam Toxicol; 1972 Sep; 8(3):129-37. PubMed ID: 4628538
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii.
    Mera R; Torres E; Abalde J
    Ecotoxicol Environ Saf; 2016 Jun; 128():236-45. PubMed ID: 26963118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute and chronic exposure of Dunaliella salina and Chlamydomonas bullosa to copper and cadmium: effects on growth.
    Visviki I; Rachlin JW
    Arch Environ Contam Toxicol; 1994 Feb; 26(2):149-53. PubMed ID: 8311507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of growth phase and culture conditions of Tetrahymena on effects of cadmium.
    Larsen J
    Toxicology; 1989 Oct; 58(2):211-23. PubMed ID: 2799826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity.
    Mera R; Torres E; Abalde J
    Aquat Toxicol; 2014 Mar; 148():92-103. PubMed ID: 24463493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp.
    Nishikawa K; Onodera A; Tominaga N
    Chemosphere; 2006 Jun; 63(9):1553-9. PubMed ID: 16297961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium toxicity on the freshwater microalga Chlamydomonas moewusii Gerloff: Biosynthesis of thiol compounds.
    Suárez C; Torres E; Pérez-Rama M; Herrero C; Abalde J
    Environ Toxicol Chem; 2010 Sep; 29(9):2009-15. PubMed ID: 20821658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experiments on the effect of usnic acid in the green alga Chlamydomonas reinhardii (author's transl)].
    Schimmer O; Lehner H
    Arch Mikrobiol; 1973 Oct; 93(2):145-54. PubMed ID: 4764231
    [No Abstract]   [Full Text] [Related]  

  • 11. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.
    Puente-Sánchez F; Díaz S; Penacho V; Aguilera A; Olsson S
    Aquat Toxicol; 2018 Jul; 200():62-72. PubMed ID: 29727772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium accumulation and toxicity affect the extracytoplasmic polyphosphate level in Chlamydomonas reinhardtii.
    Samadani M; Dewez D
    Ecotoxicol Environ Saf; 2018 Dec; 166():200-206. PubMed ID: 30269015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute toxicity of heavy metals to Tetrahymena in an in vitro experiment and envelope damage study.
    Zhang T; Li X; Lu Y; Wu C; Fang T; Liu P; Zhang C; Liang W
    Bull Environ Contam Toxicol; 2013 Jul; 91(1):62-8. PubMed ID: 23661168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemo-accumulation without changes in membrane potential in the microstome form of the ciliate Tetrahymena vorax.
    Grønlien HK; Rønnevig AK; Hagen B; Sand O
    J Exp Biol; 2010 Dec; 213(Pt 23):3980-7. PubMed ID: 21075939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model.
    Lavoie M; Campbell PG; Fortin C
    Environ Sci Technol; 2014 Jan; 48(2):1222-9. PubMed ID: 24341312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isobolographic analysis of the interaction between cadmium (II) and sodium sulphate: toxicological consequences.
    Mera R; Torres E; Abalde J
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2264-78. PubMed ID: 26658783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121.
    Samadani M; Perreault F; Oukarroum A; Dewez D
    Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel gene with antisalt and anticadmium stress activities from a halotolerant marine green alga Chlamydomonas sp. W80.
    Tanaka S; Suda Y; Ikeda K; Ono M; Miyasaka H; Watanabe M; Sasaki K; Hirata K
    FEMS Microbiol Lett; 2007 Jun; 271(1):48-52. PubMed ID: 17391362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conditional cell division mutant of Chlamydomonas reinhardii having an increased level of colchicine resistance.
    Sato C
    Exp Cell Res; 1976 Sep; 101(2):251-9. PubMed ID: 964308
    [No Abstract]   [Full Text] [Related]  

  • 20. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.