These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26091619)

  • 1. Effects of fiber type on force depression after active shortening in skeletal muscle.
    Joumaa V; Power GA; Hisey B; Caicedo A; Stutz J; Herzog W
    J Biomech; 2015 Jul; 48(10):1687-92. PubMed ID: 26091619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical parameters of the molecular motor myosin II determined in permeabilised fibres from slow and fast skeletal muscles of the rabbit.
    Percario V; Boncompagni S; Protasi F; Pertici I; Pinzauti F; Caremani M
    J Physiol; 2018 Apr; 596(7):1243-1257. PubMed ID: 29148051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight.
    Widrick JJ; Romatowski JG; Norenberg KM; Knuth ST; Bain JL; Riley DA; Trappe SW; Trappe TA; Costill DL; Fitts RH
    J Appl Physiol (1985); 2001 Jun; 90(6):2203-11. PubMed ID: 11356784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional adaptability of muscle fibers to long-term resistance exercise.
    Shoepe TC; Stelzer JE; Garner DP; Widrick JJ
    Med Sci Sports Exerc; 2003 Jun; 35(6):944-51. PubMed ID: 12783042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers.
    Fitts RH; Bodine SC; Romatowski JG; Widrick JJ
    J Appl Physiol (1985); 1998 May; 84(5):1776-87. PubMed ID: 9572830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
    Prado LG; Makarenko I; Andresen C; Krüger M; Opitz CA; Linke WA
    J Gen Physiol; 2005 Nov; 126(5):461-80. PubMed ID: 16230467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties.
    Ohira Y; Yoshinaga T; Ohara M; Kawano F; Wang XD; Higo Y; Terada M; Matsuoka Y; Roy RR; Edgerton VR
    Cells Tissues Organs; 2006; 182(3-4):129-42. PubMed ID: 16914916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-activated force of human muscle fibers following a standardized eccentric contraction.
    Choi SJ; Widrick JJ
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1409-17. PubMed ID: 20810908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy cost of isometric force production after active shortening in skinned muscle fibres.
    Joumaa V; Fitzowich A; Herzog W
    J Exp Biol; 2017 Apr; 220(Pt 8):1509-1515. PubMed ID: 28232399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.
    Andruchov O; Andruchova O; Wang Y; Galler S
    J Physiol; 2006 Feb; 571(Pt 1):231-42. PubMed ID: 16357018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers.
    Wahr PA; Cantor HC; Metzger JM
    Biophys J; 1997 Feb; 72(2 Pt 1):822-34. PubMed ID: 9017207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of resistance training on single muscle fiber contractile function in older men.
    Trappe S; Williamson D; Godard M; Porter D; Rowden G; Costill D
    J Appl Physiol (1985); 2000 Jul; 89(1):143-52. PubMed ID: 10904046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice.
    Stelzer JE; Widrick JJ
    J Appl Physiol (1985); 2003 Dec; 95(6):2425-33. PubMed ID: 12949008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of P(i) on unloaded shortening velocity of slow and fast mammalian muscle fibers.
    Widrick JJ
    Am J Physiol Cell Physiol; 2002 Apr; 282(4):C647-53. PubMed ID: 11880253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force generation and phosphate release steps in skinned rabbit soleus slow-twitch muscle fibers.
    Wang G; Kawai M
    Biophys J; 1997 Aug; 73(2):878-94. PubMed ID: 9251805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging the muscle genome to phenome across multiple biological scales.
    Sundar S; Rimkus B; Meemaduma PS; deLap S; LaFave N; Racca AW; Hettige P; Moore J; Gage M; Shehaj A; Konow N
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35288729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of myofilament force and loaded shortening by skeletal myosin binding protein C.
    Robinett JC; Hanft LM; Geist J; Kontrogianni-Konstantopoulos A; McDonald KS
    J Gen Physiol; 2019 May; 151(5):645-659. PubMed ID: 30705121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-velocity and power characteristics of rat soleus muscle fibers after hindlimb suspension.
    McDonald KS; Blaser CA; Fitts RH
    J Appl Physiol (1985); 1994 Oct; 77(4):1609-16. PubMed ID: 7836176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.