These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26091619)

  • 41. Qualitatively different cross-bridge attachments in fast and slow muscle fiber types.
    Galler S; Andruchov O; Stephenson GM; Stephenson DG
    Biochem Biophys Res Commun; 2009 Jul; 385(1):44-8. PubMed ID: 19427830
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contractile properties of rat, rhesus monkey, and human type I muscle fibers.
    Widrick JJ; Romatowski JG; Karhanek M; Fitts RH
    Am J Physiol; 1997 Jan; 272(1 Pt 2):R34-42. PubMed ID: 9038988
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unilateral lower limb suspension does not mimic bed rest or spaceflight effects on human muscle fiber function.
    Widrick JJ; Trappe SW; Romatowski JG; Riley DA; Costill DL; Fitts RH
    J Appl Physiol (1985); 2002 Jul; 93(1):354-60. PubMed ID: 12070225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contraction-induced injury to single fiber segments from fast and slow muscles of rats by single stretches.
    Macpherson PC; Schork MA; Faulkner JA
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1438-46. PubMed ID: 8944625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative electrophoretic analysis of myosin heavy chains in single muscle fibers.
    Tikunov BA; Sweeney HL; Rome LC
    J Appl Physiol (1985); 2001 May; 90(5):1927-35. PubMed ID: 11299287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-muscle fiber contractile properties in lifelong aerobic exercising women.
    Gries KJ; Minchev K; Raue U; Grosicki GJ; Begue G; Finch WH; Graham B; Trappe TA; Trappe S
    J Appl Physiol (1985); 2019 Dec; 127(6):1710-1719. PubMed ID: 31670601
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional properties of human muscle fibers after short-term resistance exercise training.
    Widrick JJ; Stelzer JE; Shoepe TC; Garner DP
    Am J Physiol Regul Integr Comp Physiol; 2002 Aug; 283(2):R408-16. PubMed ID: 12121854
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fast-to-Slow Transition of Skeletal Muscle Contractile Function and Corresponding Changes in Myosin Heavy and Light Chain Formation in the R6/2 Mouse Model of Huntington's Disease.
    Hering T; Braubach P; Landwehrmeyer GB; Lindenberg KS; Melzer W
    PLoS One; 2016; 11(11):e0166106. PubMed ID: 27820862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Eccentric contraction-induced injury to type I, IIa, and IIa/IIx muscle fibers of elderly adults.
    Choi SJ; Lim JY; Nibaldi EG; Phillips EM; Frontera WR; Fielding RA; Widrick JJ
    Age (Dordr); 2012 Feb; 34(1):215-26. PubMed ID: 21431924
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential effects of peroxynitrite on contractile protein properties in fast- and slow-twitch skeletal muscle fibers of rat.
    Dutka TL; Mollica JP; Lamb GD
    J Appl Physiol (1985); 2011 Mar; 110(3):705-16. PubMed ID: 21030671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy Cost of Force Production After a Stretch-Shortening Cycle in Skinned Muscle Fibers: Does Muscle Efficiency Increase?
    Joumaa V; Fukutani A; Herzog W
    Front Physiol; 2020; 11():567538. PubMed ID: 33536930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soleus muscle stability in wild hibernating black bears.
    Riley DA; Van Dyke JM; Vogel V; Curry BD; Bain JLW; Schuett R; Costill DL; Trappe T; Minchev K; Trappe S
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R369-R379. PubMed ID: 29641232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions.
    Toursel T; Stevens L; Granzier H; Mounier Y
    J Appl Physiol (1985); 2002 Apr; 92(4):1465-72. PubMed ID: 11896011
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single muscle fiber contractile properties of young competitive distance runners.
    Harber M; Trappe S
    J Appl Physiol (1985); 2008 Aug; 105(2):629-36. PubMed ID: 18535124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle.
    Girgenrath S; Song K; Whittemore LA
    Muscle Nerve; 2005 Jan; 31(1):34-40. PubMed ID: 15468312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of lengthening velocity on the generation of eccentric force by slow-twitch muscle fibers in long stretches.
    Weidner S; Tomalka A; Rode C; Siebert T
    Pflugers Arch; 2024 Oct; 476(10):1517-1527. PubMed ID: 39043889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resting tension characteristics in differentiating intact rat fast- and slow-twitch muscle fibers.
    Mutungi G; Trinick J; Ranatunga KW
    J Appl Physiol (1985); 2003 Dec; 95(6):2241-7. PubMed ID: 12937034
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Does the speed of shortening affect steady-state force depression in cat soleus muscle?
    Leonard TR; Herzog W
    J Biomech; 2005 Nov; 38(11):2190-7. PubMed ID: 16154405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histochemical and immunohistochemical study on muscle fibers in human extraocular muscle spindles.
    Wicke W; Wasicky R; Brugger PC; Kaminski S; Lukas JR
    Exp Eye Res; 2007 Apr; 84(4):670-9. PubMed ID: 17270173
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.
    Nelson CR; Debold EP; Fitts RH
    Am J Physiol Cell Physiol; 2014 Nov; 307(10):C939-50. PubMed ID: 25186012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.