BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 26091819)

  • 1. Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.
    Rolland V; Bergstrom DM; Lenné T; Bryant G; Chen H; Wolfe J; Holbrook NM; Stanton DE; Ball MC
    Plant Physiol; 2015 Aug; 168(4):1636-47. PubMed ID: 26091819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vulnerability of Protoxylem and Metaxylem Vessels to Embolisms and Radial Refilling in a Vascular Bundle of Maize Leaves.
    Hwang BG; Ryu J; Lee SJ
    Front Plant Sci; 2016; 7():941. PubMed ID: 27446168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat.
    Johnson DM; Brodersen CR; Reed M; Domec JC; Jackson RB
    Ann Bot; 2014 Mar; 113(4):617-27. PubMed ID: 24363350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.
    Ooeda H; Terashima I; Taneda H
    Plant Cell Physiol; 2017 Feb; 58(2):354-364. PubMed ID: 28013275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging.
    Lee SJ; Kim Y
    Ann Bot; 2008 Mar; 101(4):595-602. PubMed ID: 18077466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Visualization of the Dynamics in Xylem Embolism Formation and Removal in the Absence of Root Pressure: A Study on Excised Grapevine Stems.
    Knipfer T; Cuneo IF; Brodersen CR; McElrone AJ
    Plant Physiol; 2016 Jun; 171(2):1024-36. PubMed ID: 27208267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry.
    Hao GY; Wheeler JK; Holbrook NM; Goldstein G
    J Exp Bot; 2013 May; 64(8):2321-32. PubMed ID: 23585669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures.
    Ogasa M; Miki N; Yoshikawa K
    Tree Physiol; 2010 May; 30(5):608-17. PubMed ID: 20368339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.
    Trifilò P; Barbera PM; Raimondo F; Nardini A; Lo Gullo MA
    Tree Physiol; 2014 Feb; 34(2):109-22. PubMed ID: 24488800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.
    Mayr S; Schmid P; Laur J; Rosner S; Charra-Vaskou K; Dämon B; Hacke UG
    Plant Physiol; 2014 Apr; 164(4):1731-40. PubMed ID: 24521876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo dynamic analysis of water refilling in embolized xylem vessels of intact Zea mays leaves.
    Ryu J; Hwang BG; Lee SJ
    Ann Bot; 2016 Oct; 118(5):1033-1042. PubMed ID: 27539601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-specific trends of lumen and wall resistivities of vessels within the stem xylem vary among three woody plants.
    Ooeda H; Terashima I; Taneda H
    Tree Physiol; 2018 Feb; 38(2):223-231. PubMed ID: 29036681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylem conduits of a resurrection plant contain a unique lipid lining and refill following a distinct pattern after desiccation.
    Wagner HJ; Schneider H; Mimietz S; Wistuba N; Rokitta M; Krohne G; Haase A; Zimmermann U
    New Phytol; 2000 Nov; 148(2):239-55. PubMed ID: 11676449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.
    Hajek P; Leuschner C; Hertel D; Delzon S; Schuldt B
    Tree Physiol; 2014 Jul; 34(7):744-56. PubMed ID: 25009155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some properties of the walls of metaxylem vessels of maize roots, including tests of the wettability of their lumenal wall surfaces.
    McCully M; Canny M; Baker A; Miller C
    Ann Bot; 2014 May; 113(6):977-89. PubMed ID: 24709790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From the sap's perspective: The nature of vessel surfaces in angiosperm xylem.
    Schenk HJ; Espino S; Rich-Cavazos SM; Jansen S
    Am J Bot; 2018 Feb; 105(2):172-185. PubMed ID: 29578294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.
    Schuldt B; Leuschner C; Brock N; Horna V
    Tree Physiol; 2013 Feb; 33(2):161-74. PubMed ID: 23292668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root pressure and beyond: energetically uphill water transport into xylem vessels?
    Wegner LH
    J Exp Bot; 2014 Feb; 65(2):381-93. PubMed ID: 24311819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function.
    Choat B; Cobb AR; Jansen S
    New Phytol; 2008; 177(3):608-626. PubMed ID: 18086228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vulnerability to cavitation differs between current-year and older xylem: non-destructive observation with a compact magnetic resonance imaging system of two deciduous diffuse-porous species.
    Fukuda K; Kawaguchi D; Aihara T; Ogasa MY; Miki NH; Haishi T; Umebayashi T
    Plant Cell Environ; 2015 Dec; 38(12):2508-18. PubMed ID: 25630712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.