BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26091851)

  • 1. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.
    Barrozo A; Duarte F; Bauer P; Carvalho AT; Kamerlin SC
    J Am Chem Soc; 2015 Jul; 137(28):9061-76. PubMed ID: 26091851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.
    Pabis A; Kamerlin SC
    Curr Opin Struct Biol; 2016 Apr; 37():14-21. PubMed ID: 26716576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum.
    Jonas S; van Loo B; Hyvönen M; Hollfelder F
    J Mol Biol; 2008 Dec; 384(1):120-36. PubMed ID: 18793651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily.
    van Loo B; Jonas S; Babtie AC; Benjdia A; Berteau O; Hyvönen M; Hollfelder F
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2740-5. PubMed ID: 20133613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balancing Specificity and Promiscuity in Enzyme Evolution: Multidimensional Activity Transitions in the Alkaline Phosphatase Superfamily.
    van Loo B; Bayer CD; Fischer G; Jonas S; Valkov E; Mohamed MF; Vorobieva A; Dutruel C; Hyvönen M; Hollfelder F
    J Am Chem Soc; 2019 Jan; 141(1):370-387. PubMed ID: 30497259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling catalytic promiscuity in the alkaline phosphatase superfamily.
    Duarte F; Amrein BA; Kamerlin SC
    Phys Chem Chem Phys; 2013 Jul; 15(27):11160-77. PubMed ID: 23728154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations.
    López-Canut V; Roca M; Bertrán J; Moliner V; Tuñón I
    J Am Chem Soc; 2011 Aug; 133(31):12050-62. PubMed ID: 21609015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of different types of transition states in a single enzyme active site: QM/MM analysis of enzymes in the alkaline phosphatase superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2013 Jul; 135(28):10457-69. PubMed ID: 23786365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer.
    Pabis A; Duarte F; Kamerlin SC
    Biochemistry; 2016 Jun; 55(22):3061-81. PubMed ID: 27187273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico structural and functional characterization and phylogenetic study of alkaline phosphatase in bacterium, Rhizobium leguminosarum (Frank 1879).
    Yousafi Q; Kanwal S; Rashid H; Khan MS; Saleem S; Aslam M
    Comput Biol Chem; 2019 Dec; 83():107142. PubMed ID: 31698161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.
    Srinivasan B; Marks H; Mitra S; Smalley DM; Skolnick J
    Biochem J; 2016 Jul; 473(14):2165-77. PubMed ID: 27208174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human placental alkaline phosphatase-mediated hydrolysis correlates tightly with the electrostatic contribution from tail group.
    Yang Y; Wang K; Li W; Adelstein SJ; Kassis AI
    Chem Biol Drug Des; 2011 Dec; 78(6):923-31. PubMed ID: 21910833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site detection by spatial conformity and electrostatic analysis--unravelling a proteolytic function in shrimp alkaline phosphatase.
    Chakraborty S; Minda R; Salaye L; Bhattacharjee SK; Rao BJ
    PLoS One; 2011; 6(12):e28470. PubMed ID: 22174814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkaline Phosphatases:
    Borosky GL
    J Chem Inf Model; 2020 Dec; 60(12):6228-6241. PubMed ID: 33306371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of agglutinins from Rhizobium leguminosarum strain 252 on the activity of hydrolytic enzymes.
    Karpunina LV; Soboleva EF; Pronina OA
    Curr Microbiol; 2000 Jul; 41(1):73-5. PubMed ID: 10919404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.