These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26092094)

  • 1. Investigation of the Verhaar scheme for predicting acute aquatic toxicity: improving predictions obtained from Toxtree ver. 2.6.
    Ellison CM; Madden JC; Cronin MT; Enoch SJ
    Chemosphere; 2015 Nov; 139():146-54. PubMed ID: 26092094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of chemicals according to mechanism of aquatic toxicity: an evaluation of the implementation of the Verhaar scheme in Toxtree.
    Enoch SJ; Hewitt M; Cronin MT; Azam S; Madden JC
    Chemosphere; 2008 Sep; 73(3):243-8. PubMed ID: 18692861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse Outcome Pathway (AOP) Informed Modeling of Aquatic Toxicology: QSARs, Read-Across, and Interspecies Verification of Modes of Action.
    Ellison CM; Piechota P; Madden JC; Enoch SJ; Cronin MT
    Environ Sci Technol; 2016 Apr; 50(7):3995-4007. PubMed ID: 26889772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling quantitative structure activity-activity relationships (QSAARs): auto-pass-pass, a new approach to fill data gaps in environmental risk assessment under the REACH regulation.
    Bouhedjar K; Benfenati E; Nacereddine AK
    SAR QSAR Environ Res; 2020 Oct; 31(10):785-801. PubMed ID: 32878491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative quantitative structure-activity-activity relationships for toxicity to Tetrahymena pyriformis and Pimephales promelas.
    Kahn I; Maran U; Benfenati E; Netzeva TI; Schultz TW; Cronin MT
    Altern Lab Anim; 2007 Mar; 35(1):15-24. PubMed ID: 17411347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of random forest approach to QSAR prediction of aquatic toxicity.
    Polishchuk PG; Muratov EN; Artemenko AG; Kolumbin OG; Muratov NN; Kuz'min VE
    J Chem Inf Model; 2009 Nov; 49(11):2481-8. PubMed ID: 19860412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of in silico models for predicting LSER molecular parameters and for acute toxicity prediction to fathead minnow (Pimephales promelas).
    Lyakurwa FS; Yang X; Li X; Qiao X; Chen J
    Chemosphere; 2014 Aug; 108():17-25. PubMed ID: 24875907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity.
    Nendza M; Müller M; Wenzel A
    SAR QSAR Environ Res; 2014; 25(5):393-405. PubMed ID: 24773472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis.
    Schwöbel JA; Madden JC; Cronin MT
    Chemosphere; 2011 Oct; 85(6):1066-74. PubMed ID: 21890172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated read-across workflow for predicting acute oral toxicity: I. The decision scheme in the QSAR toolbox.
    Kutsarova S; Mehmed A; Cherkezova D; Stoeva S; Georgiev M; Petkov T; Chapkanov A; Schultz TW; Mekenyan OG
    Regul Toxicol Pharmacol; 2021 Oct; 125():105015. PubMed ID: 34293429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software.
    Patlewicz G; Jeliazkova N; Safford RJ; Worth AP; Aleksiev B
    SAR QSAR Environ Res; 2008; 19(5-6):495-524. PubMed ID: 18853299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target site model: Predicting mode of action and aquatic organism acute toxicity using Abraham parameters and feature-weighted k-nearest neighbors classification.
    Boone KS; Di Toro DM
    Environ Toxicol Chem; 2019 Feb; 38(2):375-386. PubMed ID: 30506854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity-based toxicity modelling of five-membered heterocyclic compounds: application to Tetrahymena pyriformis.
    Schultz TW; Sparfkin CL; Aptula AO
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):681-91. PubMed ID: 21120756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Market-Basket Approach to Predict the Acute Aquatic Toxicity of Munitions and Energetic Materials.
    Burgoon LD
    Bull Environ Contam Toxicol; 2016 Jun; 96(6):779-83. PubMed ID: 27091326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative structure-activity relationships approach to predict the toxicity of narcotic compounds to aquatic communities.
    Finizio A; Di Nica V; Rizzi C; Villa S
    Ecotoxicol Environ Saf; 2020 Mar; 190():110068. PubMed ID: 31841895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation and extension of a similarity-based approach for prediction of acute aquatic toxicity towards Daphnia magna.
    Cassotti M; Consonni V; Mauri A; Ballabio D
    SAR QSAR Environ Res; 2014; 25(12):1013-36. PubMed ID: 25482581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.
    Furuhama A; Hasunuma K; Hayashi TI; Tatarazako N
    SAR QSAR Environ Res; 2016 May; 27(5):343-62. PubMed ID: 27171903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.