These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 26092129)
1. A biosensing strategy for the rapid detection and classification of antibiotic resistance. Chen Q; Andersson A; Mecklenburg M; Xie B Biosens Bioelectron; 2015 Nov; 73():251-255. PubMed ID: 26092129 [TBL] [Abstract][Full Text] [Related]
2. Activity fingerprinting of AMR β-lactamase towards a fast and accurate diagnosis. Song C; Sun X; Wang Y; Bülow L; Mecklenburg M; Wu C; Meng Q; Xie B Front Cell Infect Microbiol; 2023; 13():1222156. PubMed ID: 37743856 [TBL] [Abstract][Full Text] [Related]
3. A dual-channel electrochemical biosensor enables concurrent detection of pathogens and antibiotic resistance. Gunasekaran D; Rostovsky I; Taussig D; Bar-Am T; Wine Y; Sal-Man N; Vernick S Biosens Bioelectron; 2024 Aug; 257():116314. PubMed ID: 38663325 [TBL] [Abstract][Full Text] [Related]
4. A novel thermometric biosensor for fast surveillance of β-lactamase activity in milk. Zhou S; Zhao Y; Mecklenburg M; Yang D; Xie B Biosens Bioelectron; 2013 Nov; 49():99-104. PubMed ID: 23722048 [TBL] [Abstract][Full Text] [Related]
5. Fast determination of antibiotics in whole blood. Chen Q; Andersson A; Mecklenburg M; Xie B Clin Microbiol Infect; 2013 Sep; 19(9):869-74. PubMed ID: 23190049 [TBL] [Abstract][Full Text] [Related]
6. Fluorescein-labeled beta-lactamase mutant for high-throughput screening of bacterial beta-lactamases against beta-lactam antibiotics. Chan PH; Chan KC; Liu HB; Chung WH; Leung YC; Wong KY Anal Chem; 2005 Aug; 77(16):5268-76. PubMed ID: 16097768 [TBL] [Abstract][Full Text] [Related]
7. [Influence of beta-lactamases on bacterial resistance (author's transl)]. Cullmann W Immun Infekt; 1981; 9(3):113-8. PubMed ID: 6972899 [TBL] [Abstract][Full Text] [Related]
8. Label-Free Photonic Crystal-Based β-Lactamase Biosensor for β-Lactam Antibiotic and β-Lactamase Inhibitor. Xiao F; Li G; Wu Y; Chen Q; Wu Z; Yu R Anal Chem; 2016 Sep; 88(18):9207-12. PubMed ID: 27552182 [TBL] [Abstract][Full Text] [Related]
9. Beta-lactam antibiotics and beta-lactamases: two sides of a continuing story. Richmond MH Rev Infect Dis; 1979; 1(1):30-8. PubMed ID: 400938 [TBL] [Abstract][Full Text] [Related]
10. Gene Network Analysis of Metallo Beta Lactamase Family Proteins Indicates the Role of Gene Partners in Antibiotic Resistance and Reveals Important Drug Targets. Parimelzaghan A; Anbarasu A; Ramaiah S J Cell Biochem; 2016 Jun; 117(6):1330-9. PubMed ID: 26517410 [TBL] [Abstract][Full Text] [Related]
11. Phenotypic Characterization of Multidrug-resistant Escherichia Coli with Special Reference to Extended-spectrum-beta-lactamases and Metallo-beta-lactamases in a Tertiary Care Center. Shrestha B; Shrestha S; Mishra SK; Kattel HP; Tada T; Ohara H; Kirikae T; Rijal BP; Sherchand JB; Pokhrel BM JNMA J Nepal Med Assoc; 2015; 53(198):89-95. PubMed ID: 26994027 [TBL] [Abstract][Full Text] [Related]
12. Rational design of a novel fluorescent biosensor for beta-lactam antibiotics from a class A beta-lactamase. Chan PH; Liu HB; Chen YW; Chan KC; Tsang CW; Leung YC; Wong KY J Am Chem Soc; 2004 Apr; 126(13):4074-5. PubMed ID: 15053574 [TBL] [Abstract][Full Text] [Related]
13. Beta-lactamases in anaerobic bacteria. Nord CE; Lindqvist L; Olsson-Liljequist B; Tunér K Scand J Infect Dis Suppl; 1985; 46():57-63. PubMed ID: 3877980 [TBL] [Abstract][Full Text] [Related]
14. Outsmarting metallo-beta-lactamases by mimicking their natural evolution. Oelschlaeger P J Inorg Biochem; 2008 Dec; 102(12):2043-51. PubMed ID: 18602162 [TBL] [Abstract][Full Text] [Related]
15. The evolution of antibiotic production and public health problems. Mansford KR; Slocombe B Chemioterapia; 1987 Jun; 6(3):234-40. PubMed ID: 3496977 [TBL] [Abstract][Full Text] [Related]
16. Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo. Gowers SAN; Freeman DME; Rawson TM; Rogers ML; Wilson RC; Holmes AH; Cass AE; O'Hare D ACS Sens; 2019 Apr; 4(4):1072-1080. PubMed ID: 30950598 [TBL] [Abstract][Full Text] [Related]
17. Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. Liu X; Hu Y; Pai PJ; Chen D; Lam H J Proteome Res; 2014 Mar; 13(3):1223-33. PubMed ID: 24156611 [TBL] [Abstract][Full Text] [Related]
18. Engineered riboswitch as a gene-regulatory platform for reducing antibiotic resistance. Liu L; Wang S Methods Mol Biol; 2014; 1111():251-8. PubMed ID: 24549625 [TBL] [Abstract][Full Text] [Related]
19. [Beta-lactamases...until when?]. Dorobăţ C; Dorobăţ G; Manciuc C; Vâţă A Rev Med Chir Soc Med Nat Iasi; 2011; 115(3):647-55. PubMed ID: 22046767 [TBL] [Abstract][Full Text] [Related]