BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26092225)

  • 21. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites.
    Botté CY; Yamaryo-Botté Y; Janouskovec J; Rupasinghe T; Keeling PJ; Crellin P; Coppel RL; Maréchal E; McConville MJ; McFadden GI
    J Biol Chem; 2011 Aug; 286(34):29893-903. PubMed ID: 21712377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of plastids and mitochondria from Chromera velia.
    Sharaf A; Füssy Z; Tomčala A; Richtová J; Oborník M
    Planta; 2019 Nov; 250(5):1731-1741. PubMed ID: 31422509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia.
    Janouskovec J; Sobotka R; Lai DH; Flegontov P; Koník P; Komenda J; Ali S; Prásil O; Pain A; Oborník M; Lukes J; Keeling PJ
    Mol Biol Evol; 2013 Nov; 30(11):2447-62. PubMed ID: 23974208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental distribution of coral-associated relatives of apicomplexan parasites.
    Janouškovec J; Horák A; Barott KL; Rohwer FL; Keeling PJ
    ISME J; 2013 Feb; 7(2):444-7. PubMed ID: 23151646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans.
    Sobotka R; Esson HJ; Koník P; Trsková E; Moravcová L; Horák A; Dufková P; Oborník M
    Sci Rep; 2017 Oct; 7(1):13214. PubMed ID: 29038514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin.
    Burki F; Flegontov P; Oborník M; Cihlár J; Pain A; Lukes J; Keeling PJ
    Genome Biol Evol; 2012; 4(6):626-35. PubMed ID: 22593553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phylogeny and evolution of apicoplasts and apicomplexan parasites.
    Arisue N; Hashimoto T
    Parasitol Int; 2015 Jun; 64(3):254-9. PubMed ID: 25451217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wider than Thought Phylogenetic Occurrence of Apicortin, A Characteristic Protein of Apicomplexan Parasites.
    Orosz F
    J Mol Evol; 2016 Jun; 82(6):303-14. PubMed ID: 27282556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?
    Ševčíková T; Horák A; Klimeš V; Zbránková V; Demir-Hilton E; Sudek S; Jenkins J; Schmutz J; Přibyl P; Fousek J; Vlček Č; Lang BF; Oborník M; Worden AZ; Eliáš M
    Sci Rep; 2015 May; 5():10134. PubMed ID: 26017773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined amplicon pyrosequencing assays reveal presence of the apicomplexan "type-N" (cf. Gemmocystis cylindrus) and Chromera velia on the Great Barrier Reef, Australia.
    Slapeta J; Linares MC
    PLoS One; 2013; 8(9):e76095. PubMed ID: 24098768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Why are plastid genomes retained in non-photosynthetic organisms?
    Barbrook AC; Howe CJ; Purton S
    Trends Plant Sci; 2006 Feb; 11(2):101-8. PubMed ID: 16406301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates).
    Ludewig-Klingner AK; Michael V; Jarek M; Brinkmann H; Petersen J
    Genome Biol Evol; 2018 Jan; 10(1):1-13. PubMed ID: 29202176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The plastid in Apicomplexa: what use is it?
    Gleeson MT
    Int J Parasitol; 2000 Sep; 30(10):1053-70. PubMed ID: 10996324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis.
    Cumbo VR; Baird AH; Moore RB; Negri AP; Neilan BA; Salih A; van Oppen MJ; Wang Y; Marquis CP
    Protist; 2013 Mar; 164(2):237-44. PubMed ID: 23063731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Aminoacyl-tRNA Synthetases in Chromerids.
    Sharaf A; Gruber A; Jiroutová K; Oborník M
    Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31370303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia.
    Woehle C; Dagan T; Martin WF; Gould SB
    Genome Biol Evol; 2011; 3():1220-30. PubMed ID: 21965651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of chloroplast transcript processing in Plasmodium and its chromerid algal relatives.
    Dorrell RG; Drew J; Nisbet RE; Howe CJ
    PLoS Genet; 2014 Jan; 10(1):e1004008. PubMed ID: 24453981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives.
    Salomaki ED; Kolisko M
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31430853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatty Acid Biosynthesis in Chromerids.
    Tomčala A; Michálek J; Schneedorferová I; Füssy Z; Gruber A; Vancová M; Oborník M
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32722284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.