BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26092791)

  • 1. Next-generation re-sequencing as a tool for rapid bioinformatic screening of presence and absence of genes and accessory chromosomes across isolates of Zymoseptoria tritici.
    McDonald MC; Williams AH; Milgate A; Pattemore JA; Solomon PS; Hane JK
    Fungal Genet Biol; 2015 Jun; 79():71-5. PubMed ID: 26092791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen
    Habig M; Quade J; Stukenbrock EH
    mBio; 2017 Nov; 8(6):. PubMed ID: 29184021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing Gene Tree Variation to Identify Candidate Effector Genes in Zymoseptoria tritici.
    McDonald MC; McGinness L; Hane JK; Williams AH; Milgate A; Solomon PS
    G3 (Bethesda); 2016 Apr; 6(4):779-91. PubMed ID: 26837952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview of genomic and bioinformatic resources for Zymoseptoria tritici.
    Testa A; Oliver R; Hane J
    Fungal Genet Biol; 2015 Jun; 79():13-6. PubMed ID: 26092784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome compartmentalization predates species divergence in the plant pathogen genus Zymoseptoria.
    Feurtey A; Lorrain C; Croll D; Eschenbrenner C; Freitag M; Habig M; Haueisen J; Möller M; Schotanus K; Stukenbrock EH
    BMC Genomics; 2020 Aug; 21(1):588. PubMed ID: 32842972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Evolution of Orphan Regions in Genomes of a Fungal Pathogen of Wheat.
    Plissonneau C; Stürchler A; Croll D
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes.
    Schotanus K; Soyer JL; Connolly LR; Grandaubert J; Happel P; Smith KM; Freitag M; Stukenbrock EH
    Epigenetics Chromatin; 2015; 8():41. PubMed ID: 26430472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles.
    Palma-Guerrero J; Torriani SF; Zala M; Carter D; Courbot M; Rudd JJ; McDonald BA; Croll D
    Mol Plant Pathol; 2016 Aug; 17(6):845-59. PubMed ID: 26610174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meiosis Leads to Pervasive Copy-Number Variation and Distorted Inheritance of Accessory Chromosomes of the Wheat Pathogen Zymoseptoria tritici.
    Fouché S; Plissonneau C; McDonald BA; Croll D
    Genome Biol Evol; 2018 Jun; 10(6):1416-1429. PubMed ID: 29850789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
    Soyer JL; Möller M; Schotanus K; Connolly LR; Galazka JM; Freitag M; Stukenbrock EH
    Fungal Genet Biol; 2015 Jun; 79():63-70. PubMed ID: 25857259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population-level deep sequencing reveals the interplay of clonal and sexual reproduction in the fungal wheat pathogen
    Singh NK; Karisto P; Croll D
    Microb Genom; 2021 Oct; 7(10):. PubMed ID: 34617882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen.
    Croll D; Zala M; McDonald BA
    PLoS Genet; 2013 Jun; 9(6):e1003567. PubMed ID: 23785303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici.
    Stewart EL; Croll D; Lendenmann MH; Sanchez-Vallet A; Hartmann FE; Palma-Guerrero J; Ma X; McDonald BA
    Mol Plant Pathol; 2018 Jan; 19(1):201-216. PubMed ID: 27868326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraordinary Genome Instability and Widespread Chromosome Rearrangements During Vegetative Growth.
    Möller M; Habig M; Freitag M; Stukenbrock EH
    Genetics; 2018 Oct; 210(2):517-529. PubMed ID: 30072376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome.
    Plissonneau C; Hartmann FE; Croll D
    BMC Biol; 2018 Jan; 16(1):5. PubMed ID: 29325559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-seq-Based Gene Annotation and Comparative Genomics of Four Fungal Grass Pathogens in the Genus Zymoseptoria Identify Novel Orphan Genes and Species-Specific Invasions of Transposable Elements.
    Grandaubert J; Bhattacharyya A; Stukenbrock EH
    G3 (Bethesda); 2015 Apr; 5(7):1323-33. PubMed ID: 25917918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola).
    Stukenbrock EH; Quaedvlieg W; Javan-Nikhah M; Zala M; Crous PW; McDonald BA
    Mycologia; 2012; 104(6):1397-407. PubMed ID: 22675045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus.
    Habig M; Kema GH; Holtgrewe Stukenbrock E
    Elife; 2018 Dec; 7():. PubMed ID: 30543518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and high-throughput phenotypic screening ofZymoseptoria tritici over-expression strains.
    Cairns TC; Sidhu YS; Chaudhari YK; Talbot NJ; Studholme DJ; Haynes K
    Fungal Genet Biol; 2015 Jun; 79():110-7. PubMed ID: 26092797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of small RNAs in the wheat pathogenic fungus Zymoseptoria tritici.
    Yang F
    Fungal Biol; 2015 Jul; 119(7):631-40. PubMed ID: 26058538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.