BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

928 related articles for article (PubMed ID: 26092859)

  • 1. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
    Zou M; Liu Z; Zhang XS; Wang Y
    Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mixed integer programming for multi-biomarker panel identification by distinguishing malignant from benign colorectal tumors.
    Zou M; Zhang PJ; Wen XY; Chen L; Tian YP; Wang Y
    Methods; 2015 Jul; 83():3-17. PubMed ID: 25980368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.
    Anaissi A; Goyal M; Catchpoole DR; Braytee A; Kennedy PJ
    PLoS One; 2016; 11(6):e0157330. PubMed ID: 27304923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.
    Zhang F; Kaufman HL; Deng Y; Drabier R
    BMC Med Genomics; 2013; 6 Suppl 1(Suppl 1):S4. PubMed ID: 23369435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel comparison and combining effect of radiomic and emerging genomic data for prognostic stratification of non-small cell lung carcinoma patients.
    Kim KH; Kim J; Park H; Kim H; Lee SH; Sohn I; Lee HY; Park WY
    Thorac Cancer; 2020 Sep; 11(9):2542-2551. PubMed ID: 32700470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE.
    Niijima S; Kuhara S
    BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recursive Support Vector Machine Biomarker Selection for Alzheimer's Disease.
    Zhang F; Petersen M; Johnson L; Hall J; O'Bryant SE
    J Alzheimers Dis; 2021; 79(4):1691-1700. PubMed ID: 33492292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels.
    Sanz H; Valim C; Vegas E; Oller JM; Reverter F
    BMC Bioinformatics; 2018 Nov; 19(1):432. PubMed ID: 30453885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic and prognostic value of serum thioredoxin and DJ-1 in non-small cell lung carcinoma patients.
    Fan J; Yu H; Lv Y; Yin L
    Tumour Biol; 2016 Feb; 37(2):1949-58. PubMed ID: 26334622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico comparative genomic analysis of two non-small cell lung cancer subtypes and their potentials for cancer classification.
    Li J; Li D; Wei X; Su Y
    Cancer Genomics Proteomics; 2014; 11(6):303-10. PubMed ID: 25422361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust edge-based biomarker discovery improves prediction of breast cancer metastasis.
    Adnan N; Lei C; Ruan J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):359. PubMed ID: 32998692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development.
    Liu H; Kho AT; Kohane IS; Sun Y
    PLoS Med; 2006 Jul; 3(7):e232. PubMed ID: 16800721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Protein Biomarker Panel to Detect Non-Small-Cell Lung Cancer in Korea.
    Jung YJ; Katilius E; Ostroff RM; Kim Y; Seok M; Lee S; Jang S; Kim WS; Choi CM
    Clin Lung Cancer; 2017 Mar; 18(2):e99-e107. PubMed ID: 27836219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data.
    Bastien P; Bertrand F; Meyer N; Maumy-Bertrand M
    Bioinformatics; 2015 Feb; 31(3):397-404. PubMed ID: 25286920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics.
    Lin X; Li C; Zhang Y; Su B; Fan M; Wei H
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29278382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.