These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

944 related articles for article (PubMed ID: 26092859)

  • 1. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
    Zou M; Liu Z; Zhang XS; Wang Y
    Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mixed integer programming for multi-biomarker panel identification by distinguishing malignant from benign colorectal tumors.
    Zou M; Zhang PJ; Wen XY; Chen L; Tian YP; Wang Y
    Methods; 2015 Jul; 83():3-17. PubMed ID: 25980368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predictive model for prognostic risk stratification of early-stage NSCLC based on clinicopathological and miRNA panel.
    Ying L; Lu T; Tian Y; Guo H; Wu C; Xu C; Jin J; Zhu R; Liu P; Yang Y; Yang C; Ding W; Xu C; Huang M; Ma Z; Zhang Y; Zhuo Y; Zou R; Su D
    Lung Cancer; 2024 Sep; 195():107902. PubMed ID: 39126888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.
    Anaissi A; Goyal M; Catchpoole DR; Braytee A; Kennedy PJ
    PLoS One; 2016; 11(6):e0157330. PubMed ID: 27304923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.
    Zhang F; Kaufman HL; Deng Y; Drabier R
    BMC Med Genomics; 2013; 6 Suppl 1(Suppl 1):S4. PubMed ID: 23369435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel comparison and combining effect of radiomic and emerging genomic data for prognostic stratification of non-small cell lung carcinoma patients.
    Kim KH; Kim J; Park H; Kim H; Lee SH; Sohn I; Lee HY; Park WY
    Thorac Cancer; 2020 Sep; 11(9):2542-2551. PubMed ID: 32700470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE.
    Niijima S; Kuhara S
    BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recursive Support Vector Machine Biomarker Selection for Alzheimer's Disease.
    Zhang F; Petersen M; Johnson L; Hall J; O'Bryant SE
    J Alzheimers Dis; 2021; 79(4):1691-1700. PubMed ID: 33492292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels.
    Sanz H; Valim C; Vegas E; Oller JM; Reverter F
    BMC Bioinformatics; 2018 Nov; 19(1):432. PubMed ID: 30453885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic and prognostic value of serum thioredoxin and DJ-1 in non-small cell lung carcinoma patients.
    Fan J; Yu H; Lv Y; Yin L
    Tumour Biol; 2016 Feb; 37(2):1949-58. PubMed ID: 26334622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico comparative genomic analysis of two non-small cell lung cancer subtypes and their potentials for cancer classification.
    Li J; Li D; Wei X; Su Y
    Cancer Genomics Proteomics; 2014; 11(6):303-10. PubMed ID: 25422361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subclassification of lung adenocarcinoma through comprehensive multi-omics data to benefit survival outcomes.
    Wei J; Wang X; Guo H; Zhang L; Shi Y; Wang X
    Comput Biol Chem; 2024 Oct; 112():108150. PubMed ID: 39018587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust edge-based biomarker discovery improves prediction of breast cancer metastasis.
    Adnan N; Lei C; Ruan J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):359. PubMed ID: 32998692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development.
    Liu H; Kho AT; Kohane IS; Sun Y
    PLoS Med; 2006 Jul; 3(7):e232. PubMed ID: 16800721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Protein Biomarker Panel to Detect Non-Small-Cell Lung Cancer in Korea.
    Jung YJ; Katilius E; Ostroff RM; Kim Y; Seok M; Lee S; Jang S; Kim WS; Choi CM
    Clin Lung Cancer; 2017 Mar; 18(2):e99-e107. PubMed ID: 27836219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.