BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26092860)

  • 1. atSNP: transcription factor binding affinity testing for regulatory SNP detection.
    Zuo C; Shin S; Keleş S
    Bioinformatics; 2015 Oct; 31(20):3353-5. PubMed ID: 26092860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. is-rSNP: a novel technique for in silico regulatory SNP detection.
    Macintyre G; Bailey J; Haviv I; Kowalczyk A
    Bioinformatics; 2010 Sep; 26(18):i524-30. PubMed ID: 20823317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. atSNP Search: a web resource for statistically evaluating influence of human genetic variation on transcription factor binding.
    Shin S; Hudson R; Harrison C; Craven M; Keleş S
    Bioinformatics; 2019 Aug; 35(15):2657-2659. PubMed ID: 30534948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the identification of potential regulatory variants within genome wide association candidate SNP sets.
    Chen CY; Chang IS; Hsiung CA; Wasserman WW
    BMC Med Genomics; 2014 Jun; 7():34. PubMed ID: 24920305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding.
    Zeng H; Hashimoto T; Kang DD; Gifford DK
    Bioinformatics; 2016 Feb; 32(4):490-6. PubMed ID: 26476779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale computational identification of regulatory SNPs with rSNP-MAPPER.
    Riva A
    BMC Genomics; 2012 Jun; 13 Suppl 4(Suppl 4):S7. PubMed ID: 22759655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cis-regulatory variations: a study of SNPs around genes showing cis-linkage in segregating mouse populations.
    GuhaThakurta D; Xie T; Anand M; Edwards SW; Li G; Wang SS; Schadt EE
    BMC Genomics; 2006 Sep; 7():235. PubMed ID: 16978413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies.
    Chorley BN; Wang X; Campbell MR; Pittman GS; Noureddine MA; Bell DA
    Mutat Res; 2008; 659(1-2):147-57. PubMed ID: 18565787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying functional single nucleotide polymorphisms in the human CArGome.
    Benson CC; Zhou Q; Long X; Miano JM
    Physiol Genomics; 2011 Sep; 43(18):1038-48. PubMed ID: 21771879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Which Genetics Variants in DNase-Seq Footprints Are More Likely to Alter Binding?
    Moyerbrailean GA; Kalita CA; Harvey CT; Wen X; Luca F; Pique-Regi R
    PLoS Genet; 2016 Feb; 12(2):e1005875. PubMed ID: 26901046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the effects of SNPs on transcription factor binding affinity.
    Nishizaki SS; Ng N; Dong S; Porter RS; Morterud C; Williams C; Asman C; Switzenberg JA; Boyle AP
    Bioinformatics; 2020 Jan; 36(2):364-372. PubMed ID: 31373606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNPhood: investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data.
    Arnold C; Bhat P; Zaugg JB
    Bioinformatics; 2016 Aug; 32(15):2359-60. PubMed ID: 27153574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of regulatory SNPs in human genome using ChIP-seq ENCODE data.
    Bryzgalov LO; Antontseva EV; Matveeva MY; Shilov AG; Kashina EV; Mordvinov VA; Merkulova TI
    PLoS One; 2013; 8(10):e78833. PubMed ID: 24205329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. rSNPBase: a database for curated regulatory SNPs.
    Guo L; Du Y; Chang S; Zhang K; Wang J
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1033-9. PubMed ID: 24285297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. rSNP_Guide, a database system for analysis of transcription factor binding to target sequences: application to SNPs and site-directed mutations.
    Ponomarenko JV; Merkulova TI; Vasiliev GV; Levashova ZB; Orlova GV; Lavryushev SV; Fokin ON; Ponomarenko MP; Frolov AS; Sarai A
    Nucleic Acids Res; 2001 Jan; 29(1):312-6. PubMed ID: 11125123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution of SNPs in human gene regulatory regions.
    Guo Y; Jamison DC
    BMC Genomics; 2005 Oct; 6():140. PubMed ID: 16209714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of candidate regulatory SNPs by combination of transcription-factor-binding site prediction, SNP genotyping and haploChIP.
    Ameur A; Rada-Iglesias A; Komorowski J; Wadelius C
    Nucleic Acids Res; 2009 Jul; 37(12):e85. PubMed ID: 19451166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.
    Kumar S; Ambrosini G; Bucher P
    Nucleic Acids Res; 2017 Jan; 45(D1):D139-D144. PubMed ID: 27899579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.