These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26093331)

  • 21. Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex.
    Ghisovan N; Nemri A; Shumikhina S; Molotchnikoff S
    Neuroscience; 2009 Dec; 164(3):1274-83. PubMed ID: 19747528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orientation-selective adaptation to first- and second-order patterns in human visual cortex.
    Larsson J; Landy MS; Heeger DJ
    J Neurophysiol; 2006 Feb; 95(2):862-81. PubMed ID: 16221748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oblique effects beyond low-level visual processing.
    Heinrich SP; Aertsen A; Bach M
    Vision Res; 2008 Mar; 48(6):809-18. PubMed ID: 18249436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unequal representation of cardinal vs. oblique orientations in the middle temporal visual area.
    Xu X; Collins CE; Khaytin I; Kaas JH; Casagrande VA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17490-5. PubMed ID: 17088527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.
    Balikou P; Gourtzelidis P; Mantas A; Moutoussis K; Evdokimidis I; Smyrnis N
    Exp Brain Res; 2015 Nov; 233(11):3097-108. PubMed ID: 26226929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
    Crowder NA; Price NS; Hietanen MA; Dreher B; Clifford CW; Ibbotson MR
    J Neurophysiol; 2006 Jan; 95(1):271-83. PubMed ID: 16192327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of crowding on orientation-selective adaptation in human early visual cortex.
    Bi T; Cai P; Zhou T; Fang F
    J Vis; 2009 Oct; 9(11):13.1-10. PubMed ID: 20053076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative comparison of the hemodynamic activation elicited by cardinal and oblique gratings with functional near-infrared spectroscopy.
    Sun M; Huang J; Wang F; An A; Tian F; Liu H; Niu H; Song Y
    Neuroreport; 2013 May; 24(7):354-8. PubMed ID: 23528283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Weakened feedback abolishes neural oblique effect evoked by pseudo-natural visual stimuli in area 17 of the cat.
    Shen W; Liang Z; Shou T
    Neurosci Lett; 2008 May; 437(1):65-70. PubMed ID: 18420348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parallel development of orientation maps and spatial frequency selectivity in cat visual cortex.
    Tani T; Ribot J; O'Hashi K; Tanaka S
    Eur J Neurosci; 2012 Jan; 35(1):44-55. PubMed ID: 22211742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orientation discrimination and contrast detection thresholds in migraine for cardinal and oblique angles.
    Tibber MS; Guedes A; Shepherd AJ
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5599-604. PubMed ID: 17122154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of oblique effect in the cat's primary visual cortex via orientation preference shifting induced by excitatory feedback from higher-order cortical area 21a.
    Liang Z; Shen W; Shou T
    Neuroscience; 2007 Mar; 145(1):377-83. PubMed ID: 17223276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model of encoding and decoding in V1 and MT accounts for motion perception anisotropies in the human visual system.
    Rokem A; Silver MA
    Brain Res; 2009 Nov; 1299():3-16. PubMed ID: 19595992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orientation-selective chromatic mechanisms in human visual cortex.
    McDonald JS; Mannion DJ; Goddard E; Clifford CW
    J Vis; 2010 Oct; 10(12):34. PubMed ID: 21047766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eccentricity-dependent temporal contrast tuning in human visual cortex measured with fMRI.
    Himmelberg MM; Wade AR
    Neuroimage; 2019 Jan; 184():462-474. PubMed ID: 30243956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separating the chaff from the wheat: possible origins of the oblique effect.
    Keil MS; Cristóbal G
    J Opt Soc Am A Opt Image Sci Vis; 2000 Apr; 17(4):697-710. PubMed ID: 10757177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slab-like functional architecture of higher order cortical area 21a showing oblique effect of orientation preference in the cat.
    Huang L; Shou T; Chen X; Yu H; Sun C; Liang Z
    Neuroimage; 2006 Sep; 32(3):1365-74. PubMed ID: 16798018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical imaging of contrast response in Macaque monkey V1 and V2.
    Lu HD; Roe AW
    Cereb Cortex; 2007 Nov; 17(11):2675-95. PubMed ID: 17264252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oblique effect: a neural basis in the visual cortex.
    Li B; Peterson MR; Freeman RD
    J Neurophysiol; 2003 Jul; 90(1):204-17. PubMed ID: 12611956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurophysiological basis of contrast dependent BOLD orientation tuning.
    Butler R; Mierzwinski GW; Bernier PM; Descoteaux M; Gilbert G; Whittingstall K
    Neuroimage; 2020 Feb; 206():116323. PubMed ID: 31678228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.