BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 26093346)

  • 1. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression.
    Li S; Demirci E; Silberschmidt VV
    J Mech Behav Biomed Mater; 2013 May; 21():109-20. PubMed ID: 23563047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. European Society of Biomechanics S.M. Perren Award 2016: A statistical damage model for bone tissue based on distinct compressive and tensile cracks.
    Zysset PK; Schwiedrzik J; Wolfram U
    J Biomech; 2016 Nov; 49(15):3616-3625. PubMed ID: 27829493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rate-independent continuum model for bone tissue with interaction of compressive and tensile micro-damage.
    Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2017 Oct; 74():448-462. PubMed ID: 28735723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of torsional loading on compressive fatigue behaviour of trabecular bone.
    Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A
    J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of cancellous bone under large strains and a constitutive probabilistic model.
    Kefalas V; Eftaxiopoulos DA
    J Mech Behav Biomed Mater; 2012 Feb; 6():41-52. PubMed ID: 22301172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of strain rate on the mechanical properties of human cortical bone.
    Hansen U; Zioupos P; Simpson R; Currey JD; Hynd D
    J Biomech Eng; 2008 Feb; 130(1):011011. PubMed ID: 18298187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An over-nonlocal implicit gradient-enhanced damage-plastic model for trabecular bone under large compressive strains.
    Hosseini HS; Horák M; Zysset PK; Jirásek M
    Int J Numer Method Biomed Eng; 2015 Nov; 31(11):. PubMed ID: 26033968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of the elastic and plastic components of strain in tensile and compressive fatigue of human cortical bone in relation to orthopaedic biomechanics.
    Winwood K; Zioupos P; Currey JD; Cotton JR; Taylor M
    J Musculoskelet Neuronal Interact; 2006; 6(2):134-41. PubMed ID: 16849822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT; Espinoza NR; Cirilo SR; Blob RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of including damage at the tissue level in the nonlinear homogenisation of trabecular bone.
    Levrero-Florencio F; Manda K; Margetts L; Pankaj P
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1681-1695. PubMed ID: 28500359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.