These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 26093346)

  • 41. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel method to analyze post-yield mechanical properties at trabecular bone tissue level.
    Carretta R; Luisier B; Bernoulli D; Stüssi E; Müller R; Lorenzetti S
    J Mech Behav Biomed Mater; 2013 Apr; 20():6-18. PubMed ID: 23455157
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A cumulative damage model for bone fracture.
    Carter DR; Caler WE
    J Orthop Res; 1985; 3(1):84-90. PubMed ID: 3981298
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of water on nanomechanics of bone is different between tension and compression.
    Samuel J; Park JS; Almer J; Wang X
    J Mech Behav Biomed Mater; 2016 Apr; 57():128-38. PubMed ID: 26710258
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compression or tension? The stress distribution in the proximal femur.
    Rudman KE; Aspden RM; Meakin JR
    Biomed Eng Online; 2006 Feb; 5():12. PubMed ID: 16504005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
    Nyman JS; Leng H; Dong XN; Wang X
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):613-9. PubMed ID: 19716106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.
    Niebur GL; Yuen JC; Burghardt AJ; Keaveny TM
    J Biomech; 2001 May; 34(5):699-706. PubMed ID: 11311712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mixed-mode fracture of human cortical bone.
    Zimmermann EA; Launey ME; Barth HD; Ritchie RO
    Biomaterials; 2009 Oct; 30(29):5877-84. PubMed ID: 19573911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of damage and microcracking on the impact strength of bone.
    Reilly GC; Currey JD
    J Biomech; 2000 Mar; 33(3):337-43. PubMed ID: 10673117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test.
    Silva FGA; de Moura MFSF; Dourado N; Xavier J; Pereira FAM; Morais JJL; Dias MIR; Lourenço PJ; Judas FM
    Med Biol Eng Comput; 2017 Aug; 55(8):1249-1260. PubMed ID: 27783311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach.
    Harrison NM; McDonnell P; Mullins L; Wilson N; O'Mahoney D; McHugh PE
    Biomech Model Mechanobiol; 2013 Apr; 12(2):225-41. PubMed ID: 22527367
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Initial anisotropy in demineralized bovine cortical bone in compressive cyclic loading-unloading.
    Novitskaya E; Lee S; Lubarda VA; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):817-23. PubMed ID: 25427492
    [TBL] [Abstract][Full Text] [Related]  

  • 58. From Tension to Compression: Asymmetric Mechanical Behaviour of Trabecular Bone's Organic Phase.
    Xie S; Wallace RJ; Callanan A; Pankaj P
    Ann Biomed Eng; 2018 Jun; 46(6):801-809. PubMed ID: 29589168
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metallic open-cell foams--a promising approach to fabricating good medical implants.
    Ohrndorf A; Krupp U; Christ HJ
    Technol Health Care; 2006; 14(4-5):201-8. PubMed ID: 17065742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Are tensile and compressive Young's moduli of compact bone different?
    Barak MM; Currey JD; Weiner S; Shahar R
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):51-60. PubMed ID: 19627807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.