These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches. Pithioux M; Subit D; Chabrand P Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692 [TBL] [Abstract][Full Text] [Related]
65. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026 [TBL] [Abstract][Full Text] [Related]
66. Damage analysis of human cortical bone under compressive and tensile loadings. Maghami E; Moore JP; Josephson TO; Najafi AR Comput Methods Biomech Biomed Engin; 2022 Feb; 25(3):342-357. PubMed ID: 35014938 [TBL] [Abstract][Full Text] [Related]
67. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system. Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942 [TBL] [Abstract][Full Text] [Related]
68. A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model. Bradley AL; Swain MV; Neil Waddell J; Das R; Athens J; Kieser JA J Mech Behav Biomed Mater; 2014 May; 33():67-75. PubMed ID: 23867291 [TBL] [Abstract][Full Text] [Related]
69. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Miranda P; Pajares A; Guiberteau F Acta Biomater; 2008 Nov; 4(6):1715-24. PubMed ID: 18583207 [TBL] [Abstract][Full Text] [Related]
70. An experimental study on the biomechanical properties of the cancellous bones of distal femur. Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020 [TBL] [Abstract][Full Text] [Related]
71. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. Keyak JH; Rossi SA J Biomech; 2000 Feb; 33(2):209-14. PubMed ID: 10653034 [TBL] [Abstract][Full Text] [Related]
72. Bone stiffness changes due to microdamage under different loadings. Pidaparti RM; Liu Y Biomed Mater Eng; 1997; 7(3):193-203. PubMed ID: 9262832 [TBL] [Abstract][Full Text] [Related]
73. Strain rate-dependent failure mechanics of the intervertebral disc under tension/compression and constitutive analysis. Liu Q; Zhang HL; Zhang YL; Wang S; Feng XQ; Li K; Zhang CQ Med Eng Phys; 2024 May; 127():104158. PubMed ID: 38692761 [TBL] [Abstract][Full Text] [Related]
74. Bone creep-fatigue damage accumulation. Caler WE; Carter DR J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445 [TBL] [Abstract][Full Text] [Related]
75. Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body. Kinzl M; Wolfram U; Pahr DH J Mech Behav Biomed Mater; 2013 Oct; 26():136-47. PubMed ID: 23768961 [TBL] [Abstract][Full Text] [Related]
76. Mechanical characterization of human brain tissue. Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920 [TBL] [Abstract][Full Text] [Related]
77. Effect of variations in tissue-level ductility on human vertebral strength. Sadoughi S; Vom Scheidt A; Nawathe S; Zhu S; Moini A; Keaveny TM Bone; 2020 Aug; 137():115445. PubMed ID: 32454256 [TBL] [Abstract][Full Text] [Related]
78. Quantification of Age-Related Tissue-Level Failure Strains of Rat Femoral Cortical Bones Using an Approach Combining Macrocompressive Test and Microfinite Element Analysis. Fan R; Gong H; Zhang R; Gao J; Jia Z; Hu Y J Biomech Eng; 2016 Apr; 138(4):041006. PubMed ID: 26902102 [TBL] [Abstract][Full Text] [Related]
79. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. Keaveny TM; Guo XE; Wachtel EF; McMahon TA; Hayes WC J Biomech; 1994 Sep; 27(9):1127-36. PubMed ID: 7929462 [TBL] [Abstract][Full Text] [Related]
80. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Carter DR; Caler WE; Spengler DM; Frankel VH Acta Orthop Scand; 1981 Oct; 52(5):481-90. PubMed ID: 7331784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]