BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26093414)

  • 1. Characterization of spark-generated N-waves in air using an optical schlieren method.
    Karzova MM; Yuldashev PV; Khokhlova VA; Ollivier S; Salze E; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3244-52. PubMed ID: 26093414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods.
    Yuldashev P; Ollivier S; Averiyanov M; Sapozhnikov O; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2010 Dec; 128(6):3321-33. PubMed ID: 21218866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones.
    Yuldashev P; Karzova M; Khokhlova V; Ollivier S; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3314-24. PubMed ID: 26093421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irregular reflection of spark-generated shock pulses from a rigid surface: Mach-Zehnder interferometry measurements in air.
    Karzova MM; Lechat T; Ollivier S; Dragna D; Yuldashev PV; Khokhlova VA; Blanc-Benon P
    J Acoust Soc Am; 2019 Jan; 145(1):26. PubMed ID: 30710976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence.
    Salze É; Yuldashev P; Ollivier S; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2014 Aug; 136(2):556-66. PubMed ID: 25096090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.
    Aleiferis P; Charalambides A; Hardalupas Y; Soulopoulos N; Taylor AM; Urata Y
    Appl Opt; 2015 May; 54(14):4566-79. PubMed ID: 25967518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random focusing of nonlinear acoustic N-waves in fully developed turbulence: laboratory scale experiment.
    Averiyanov M; Ollivier S; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2011 Dec; 130(6):3595-607. PubMed ID: 22225017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schlieren imaging of shock waves from a trumpet.
    Pandya BH; Settles GS; Miller JD
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3363-7. PubMed ID: 14714816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mach stem formation in reflection and focusing of weak shock acoustic pulses.
    Karzova MM; Khokhlova VA; Salze E; Ollivier S; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):EL436-42. PubMed ID: 26093452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
    Averiyanov M; Blanc-Benon P; Cleveland RO; Khokhlova V
    J Acoust Soc Am; 2011 Apr; 129(4):1760-72. PubMed ID: 21476633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.
    Yuldashev PV; Ollivier S; Karzova MM; Khokhlova VA; Blanc-Benon P
    J Acoust Soc Am; 2017 Dec; 142(6):3402. PubMed ID: 29289086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.
    Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical distortion in the field of a lithotripter shock wave.
    Carnell MT; Emmony DC
    Appl Opt; 1995 Oct; 34(28):6465-70. PubMed ID: 21060496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raw high-speed schlieren footage of acoustic waves in air for subsequent computational analysis and audio recovery.
    Harvey JS; Smithson HE; Siviour CR
    Data Brief; 2018 Aug; 19():1647-1649. PubMed ID: 30229038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-shot spatially resolved characterization of laser-induced shock waves in water.
    Noack J; Vogel A
    Appl Opt; 1998 Jul; 37(19):4092-9. PubMed ID: 18285846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-range average temperature measurements of convective fluid flows by using a schlieren system.
    Martínez-González A; Moreno-Hernández D; León-Rodríguez M; Carrillo-Delgado C
    Appl Opt; 2016 Jan; 55(3):556-64. PubMed ID: 26835931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.
    de Groot-Hedlin CD
    J Acoust Soc Am; 2012 Aug; 132(2):646-56. PubMed ID: 22894187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical study of nonlinear infrasound propagation in a windy atmosphere.
    Sabatini R; Marsden O; Bailly C; Bogey C
    J Acoust Soc Am; 2016 Jul; 140(1):641. PubMed ID: 27475186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Schlieren Imaging and a Radar Acoustic Sounding System for the Detection of Close-in Air Turbulence.
    Gordon S; Brooker G
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.