These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26093433)

  • 1. Objective analysis of ambisonics for hearing aid applications: Effect of listener's head, room reverberation, and directional microphones.
    Oreinos C; Buchholz JM
    J Acoust Soc Am; 2015 Jun; 137(6):3447-65. PubMed ID: 26093433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of "omnidirectional" loudspeaker directivity on measured room impulse responses.
    Knüttel T; Witew IB; Vorländer M
    J Acoust Soc Am; 2013 Nov; 134(5):3654-62. PubMed ID: 24180776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A note on determination of the diffuse-field sensitivity of microphones using the reciprocity technique.
    Barrera-Figueroa S; Rasmussen K; Jacobsen F
    J Acoust Soc Am; 2008 Sep; 124(3):1505-12. PubMed ID: 19045642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sound reproduction systems using variable-directivity loudspeakers.
    Poletti MA; Fazi FM; Nelson PA
    J Acoust Soc Am; 2011 Mar; 129(3):1429-38. PubMed ID: 21428507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objective performance analysis of spherical microphone arrays for speech enhancement in rooms.
    Peled Y; Rafaely B
    J Acoust Soc Am; 2012 Sep; 132(3):1473-81. PubMed ID: 22978876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rigid sphere room impulse response simulation: algorithm and applications.
    Jarrett DP; Habets EA; Thomas MR; Naylor PA
    J Acoust Soc Am; 2012 Sep; 132(3):1462-72. PubMed ID: 22978875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of reverberation on personal audio devices.
    Simón-Gálvez MF; Elliott SJ; Cheer J
    J Acoust Soc Am; 2014 May; 135(5):2654-63. PubMed ID: 24815249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring and modeling speech intelligibility in real and loudspeaker-based virtual sound environments.
    Ahrens A; Marschall M; Dau T
    Hear Res; 2019 Jun; 377():307-317. PubMed ID: 30867112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distance and reverberation effects on directional benefit.
    Ricketts TA; Hornsby BW
    Ear Hear; 2003 Dec; 24(6):472-84. PubMed ID: 14663347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for measuring violin sound radiation based on bowed glissandi and its application to sound synthesis.
    Perez Carrillo A; Bonada J; Patynen J; Valimaki V
    J Acoust Soc Am; 2011 Aug; 130(2):1020-9. PubMed ID: 21877814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of virtual sound sources with bilateral hearing aids in realistic acoustical scenes.
    Mueller MF; Kegel A; Schimmel SM; Dillier N; Hofbauer M
    J Acoust Soc Am; 2012 Jun; 131(6):4732-42. PubMed ID: 22712946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of sound field control with a circular double-layer array of loudspeakers.
    Chang JH; Jacobsen F
    J Acoust Soc Am; 2013 Apr; 133(4):2046-54. PubMed ID: 23556575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wind noise in hearing aids: II. Effect of microphone directivity.
    Chung K
    Int J Audiol; 2012 Jan; 51(1):29-42. PubMed ID: 22111542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of in-the-ear microphone directionality on sound direction identification.
    Chung K; Neuman AC; Higgins M
    J Acoust Soc Am; 2008 Apr; 123(4):2264-75. PubMed ID: 18397031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A superdirective array of phase shift sources.
    Simón Gálvez MF; Elliott SJ; Cheer J
    J Acoust Soc Am; 2012 Aug; 132(2):746-56. PubMed ID: 22894197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech recognition for bilaterally asymmetric and symmetric hearing aid microphone modes in simulated classroom environments.
    Ricketts TA; Picou EM
    Ear Hear; 2013 Sep; 34(5):601-9. PubMed ID: 23524508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room geometry inference based on spherical microphone array eigenbeam processing.
    Mabande E; Kowalczyk K; Sun H; Kellermann W
    J Acoust Soc Am; 2013 Oct; 134(4):2773-89. PubMed ID: 24116416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the pressure at a listener's ears in an active headrest system using the remote microphone technique.
    Jung W; Elliott SJ; Cheer J
    J Acoust Soc Am; 2018 May; 143(5):2858. PubMed ID: 29857743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the perceived distance of an auditory object by manipulation of loudspeaker directivity.
    Laitinen MV; Politis A; Huhtakallio I; Pulkki V
    J Acoust Soc Am; 2015 Jun; 137(6):EL462-8. PubMed ID: 26093456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of spherical loudspeaker arrays for local active control of sound.
    Peleg T; Rafaely B
    J Acoust Soc Am; 2011 Oct; 130(4):1926-35. PubMed ID: 21973347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.