These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26093443)

  • 1. Efficient time-domain simulation of nonlinear, state-space, transmission-line models of the cochlea (L).
    Pan S; Elliott SJ; Teal PD; Lineton B
    J Acoust Soc Am; 2015 Jun; 137(6):3559-62. PubMed ID: 26093443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the fluid-structure interaction in the cochlea.
    Rapson MJ; Hamilton TJ; Tapson JC
    J Acoust Soc Am; 2014 Jul; 136(1):284-300. PubMed ID: 24993214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission line cochlear models: improved accuracy and efficiency.
    Altoè A; Pulkki V; Verhulst S
    J Acoust Soc Am; 2014 Oct; 136(4):EL302-8. PubMed ID: 25324114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different models of the active cochlea, and how to implement them in the state-space formalism.
    Sisto R; Moleti A; Paternoster N; Botti T; Bertaccini D
    J Acoust Soc Am; 2010 Sep; 128(3):1191-202. PubMed ID: 20815455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wave finite element analysis of the passive cochlea.
    Elliott SJ; Ni G; Mace BR; Lineton B
    J Acoust Soc Am; 2013 Mar; 133(3):1535-45. PubMed ID: 23464024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear cochlear mechanics.
    Zweig G
    J Acoust Soc Am; 2016 May; 139(5):2561. PubMed ID: 27250151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limit cycle oscillations in a nonlinear state space model of the human cochlea.
    Ku EM; Elliott SJ; Lineton B
    J Acoust Soc Am; 2009 Aug; 126(2):739-50. PubMed ID: 19640040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear response to a click in a time-domain model of the mammalian ear.
    Meaud J; Lemons C
    J Acoust Soc Am; 2015 Jul; 138(1):193-207. PubMed ID: 26233019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models.
    Moleti A; Paternoster N; Bertaccini D; Sisto R; Sanjust F
    J Acoust Soc Am; 2009 Nov; 126(5):2425-36. PubMed ID: 19894824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-tone suppression and combination tone generation as computations performed by the Hopf cochlea.
    Stoop R; Kern A
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268103. PubMed ID: 15698025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A state space model for cochlear mechanics.
    Elliott SJ; Ku EM; Lineton B
    J Acoust Soc Am; 2007 Nov; 122(5):2759-71. PubMed ID: 18189567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stationary noise responses in a nonlinear model of cochlear mechanics: iterative solutions in the frequency domain.
    Liu YW
    J Acoust Soc Am; 2014 Oct; 136(4):1788-96. PubMed ID: 25324080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of nonlinear mammalian cochlear-partition models.
    Szalai R; Champneys A; Homer M; Ó Maoiléidigh D; Kennedy H; Cooper N
    J Acoust Soc Am; 2013 Jan; 133(1):323-36. PubMed ID: 23297905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion.
    Edom E; Obrist D; Henniger R; Kleiser L; Sim JH; Huber AM
    J Acoust Soc Am; 2013 Nov; 134(5):3749-58. PubMed ID: 24180785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-dimensional cochlear fluid model based on conformal mapping.
    Lüling H; Franosch JM; van Hemmen JL
    J Acoust Soc Am; 2010 Dec; 128(6):3577-84. PubMed ID: 21218890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unification and extension of monolithic state space and iterative cochlear models.
    Rapson MJ; Tapson JC; Karpul D
    J Acoust Soc Am; 2012 May; 131(5):3935-52. PubMed ID: 22559368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of basilar membrane radial velocity profile on fluid coupling in the cochlea.
    Ni G; Elliott SJ
    J Acoust Soc Am; 2013 Mar; 133(3):EL181-7. PubMed ID: 23464126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence on predicted harmonic and distortion product generation of the position of the nonlinearity within cochlear micromechanical models.
    How JA; Elliott SJ; Lineton B
    J Acoust Soc Am; 2010 Feb; 127(2):652-5. PubMed ID: 20136186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metabolic presbyacusis on cochlear responses: a simulation approach using a physiologically-based model.
    Saremi A; Stenfelt S
    J Acoust Soc Am; 2013 Oct; 134(4):2833-51. PubMed ID: 24116421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?
    Altoè A; Charaziak KK; Shera CA
    J Acoust Soc Am; 2017 Dec; 142(6):3510. PubMed ID: 29289066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.