These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26093544)

  • 1. Excitation energies from frozen-density embedding with accurate embedding potentials.
    Artiukhin DG; Jacob CR; Neugebauer J
    J Chem Phys; 2015 Jun; 142(23):234101. PubMed ID: 26093544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation energies of embedded open-shell systems: Unrestricted frozen-density-embedding time-dependent density-functional theory.
    Böckers M; Neugebauer J
    J Chem Phys; 2018 Aug; 149(7):074102. PubMed ID: 30134677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsystem real-time time dependent density functional theory.
    Krishtal A; Ceresoli D; Pavanello M
    J Chem Phys; 2015 Apr; 142(15):154116. PubMed ID: 25903875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory.
    Kiewisch K; Eickerling G; Reiher M; Neugebauer J
    J Chem Phys; 2008 Jan; 128(4):044114. PubMed ID: 18247937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic subsystem density-functional theory.
    Genova A; Ceresoli D; Pavanello M
    J Chem Phys; 2014 Nov; 141(17):174101. PubMed ID: 25381496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method.
    Sinha D; Pavanello M
    J Chem Phys; 2015 Aug; 143(8):084120. PubMed ID: 26328831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental Effects with Frozen-Density Embedding in Real-Time Time-Dependent Density Functional Theory Using Localized Basis Functions.
    De Santis M; Belpassi L; Jacob CR; Severo Pereira Gomes A; Tarantelli F; Visscher L; Storchi L
    J Chem Theory Comput; 2020 Sep; 16(9):5695-5711. PubMed ID: 32786918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density differences in embedding theory with external orbital orthogonality.
    Tamukong PK; Khait YG; Hoffmann MR
    J Phys Chem A; 2014 Oct; 118(39):9182-200. PubMed ID: 25084344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximate versus Exact Embedding for Chiroptical Properties: Reconsidering Failures in Potential and Response.
    Niemeyer N; Tölle J; Neugebauer J
    J Chem Theory Comput; 2020 May; 16(5):3104-3120. PubMed ID: 32301613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the accuracy of frozen density embedding calculations with hybrid and orbital-dependent functionals for non-bonded interaction energies.
    Laricchia S; Fabiano E; Della Sala F
    J Chem Phys; 2012 Jul; 137(1):014102. PubMed ID: 22779632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory.
    Neugebauer J
    J Chem Phys; 2007 Apr; 126(13):134116. PubMed ID: 17430025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The merits of the frozen-density embedding scheme to model solvatochromic shifts.
    Neugebauer J; Louwerse MJ; Baerends EJ; Wesolowski TA
    J Chem Phys; 2005 Mar; 122(9):094115. PubMed ID: 15836120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavefunction in density functional theory embedding for excited states: which wavefunctions, which densities?
    Daday C; König C; Neugebauer J; Filippi C
    Chemphyschem; 2014 Oct; 15(15):3205-17. PubMed ID: 25288452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.
    Heßelmann A
    J Chem Theory Comput; 2015 Apr; 11(4):1607-20. PubMed ID: 26574370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frozen Density Embedding with External Orthogonality in Delocalized Covalent Systems.
    Chulhai DV; Jensen L
    J Chem Theory Comput; 2015 Jul; 11(7):3080-8. PubMed ID: 26575744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-Specific Embedding Potentials for Excitation-Energy Calculations.
    Daday C; König C; Valsson O; Neugebauer J; Filippi C
    J Chem Theory Comput; 2013 May; 9(5):2355-67. PubMed ID: 26583726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.
    Śmiga S; Fabiano E; Laricchia S; Constantin LA; Della Sala F
    J Chem Phys; 2015 Apr; 142(15):154121. PubMed ID: 25903880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of the M11 and M11-L density functionals for calculations of electronic excitation energies by adiabatic time-dependent density functional theory.
    Peverati R; Truhlar DG
    Phys Chem Chem Phys; 2012 Aug; 14(32):11363-70. PubMed ID: 22801459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.