These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26093550)

  • 1. Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method.
    Sakong S; Naderian M; Mathew K; Hennig RG; Groß A
    J Chem Phys; 2015 Jun; 142(23):234107. PubMed ID: 26093550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of density functional theory to study the double layer of an electrolyte with an explicit dimer model for the solvent.
    Henderson D; Jiang DE; Jin Z; Wu J
    J Phys Chem B; 2012 Sep; 116(36):11356-61. PubMed ID: 22889259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconciling Work Functions and Adsorption Enthalpies for Implicit Solvent Models: A Pt (111)/Water Interface Case Study.
    Bramley G; Nguyen MT; Glezakou VA; Rousseau R; Skylaris CK
    J Chem Theory Comput; 2020 Apr; 16(4):2703-2715. PubMed ID: 32182065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfate, Bisulfate, and Hydrogen Co-adsorption on Pt(111) and Au(111) in an Electrochemical Environment.
    Gossenberger F; Juarez F; Groß A
    Front Chem; 2020; 8():634. PubMed ID: 32850652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO-Solvent Gap.
    Sundararaman R; Figueiredo MC; Koper MTM; Schwarz KA
    J Phys Chem Lett; 2017 Nov; 8(21):5344-5348. PubMed ID: 29040805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dispersion correction on the Au(1 1 1)-H2O interface: a first-principles study.
    Nadler R; Sanz JF
    J Chem Phys; 2012 Sep; 137(11):114709. PubMed ID: 22998283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode.
    Skúlason E; Karlberg GS; Rossmeisl J; Bligaard T; Greeley J; Jónsson H; Nørskov JK
    Phys Chem Chem Phys; 2007 Jul; 9(25):3241-50. PubMed ID: 17579732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles.
    Sakong S; Forster-Tonigold K; Groß A
    J Chem Phys; 2016 May; 144(19):194701. PubMed ID: 27208959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT-solvation approach.
    Tesch R; Kowalski PM; Eikerling MH
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34348250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion adsorption at a metallic electrode: an ab initio based simulation study.
    Pounds M; Tazi S; Salanne M; Madden PA
    J Phys Condens Matter; 2009 Oct; 21(42):424109. PubMed ID: 21715844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A density-functional theory study of electrochemical adsorption of sulfuric acid anions on Pt(111).
    Santana JA; Cabrera CR; Ishikawa Y
    Phys Chem Chem Phys; 2010 Aug; 12(32):9526-34. PubMed ID: 20585682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling magnesium surfaces and their dissolution in an aqueous environment using an implicit solvent model.
    Aziz A; Carrasco J
    J Chem Phys; 2022 May; 156(17):174702. PubMed ID: 35525650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical method for quantifying the potential of zero charge at the platinum-water electrochemical interface.
    Xu P; von Rueden AD; Schimmenti R; Mavrikakis M; Suntivich J
    Nat Mater; 2023 Apr; 22(4):503-510. PubMed ID: 36781952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics.
    Gauthier JA; Dickens CF; Heenen HH; Vijay S; Ringe S; Chan K
    J Chem Theory Comput; 2019 Dec; 15(12):6895-6906. PubMed ID: 31689089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grand canonical simulations of electrochemical interfaces in implicit solvation models.
    Hörmann NG; Andreussi O; Marzari N
    J Chem Phys; 2019 Jan; 150(4):041730. PubMed ID: 30709280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Solvent Effects at the Aqueous/Pt(111) Interface.
    Iyemperumal SK; Deskins NA
    Chemphyschem; 2017 Aug; 18(16):2171-2190. PubMed ID: 28464413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implicit self-consistent electrolyte model in plane-wave density-functional theory.
    Mathew K; Kolluru VSC; Mula S; Steinmann SN; Hennig RG
    J Chem Phys; 2019 Dec; 151(23):234101. PubMed ID: 31864239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of the potential of minimum mass for platinum electrodes.
    Jerkiewicz G; Vatankhah G; Tanaka S; Lessard J
    Langmuir; 2011 Apr; 27(7):4220-6. PubMed ID: 21401076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrochemical interface in first-principles calculations.
    Schwarz K; Sundararaman R
    Surf Sci Rep; 2020 May; 75(2):. PubMed ID: 34194128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.