These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 26093605)
1. Microbial kinetics of Clostridium termitidis on cellobiose and glucose for biohydrogen production. Gomez-Flores M; Nakhla G; Hafez H Biotechnol Lett; 2015 Oct; 37(10):1965-71. PubMed ID: 26093605 [TBL] [Abstract][Full Text] [Related]
2. Harvesting biohydrogen from cellobiose from sulfide or nitrite-containing wastewaters using Clostridium sp. R1. Ho KL; Lee DJ Bioresour Technol; 2011 Sep; 102(18):8547-9. PubMed ID: 21555217 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose. Munir RI; Spicer V; Krokhin OV; Shamshurin D; Zhang X; Taillefer M; Blunt W; Cicek N; Sparling R; Levin DB BMC Microbiol; 2016 May; 16():91. PubMed ID: 27215540 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose. Gomez-Flores M; Nakhla G; Hafez H AMB Express; 2017 Dec; 7(1):84. PubMed ID: 28429329 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen Production by Immobilized Cells of Clostridium intestinale Strain URNW Using Alginate Beads. Güngörmüşler M; Tamayol A; Levin DB Appl Biochem Biotechnol; 2021 May; 193(5):1558-1573. PubMed ID: 33484448 [TBL] [Abstract][Full Text] [Related]
6. Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. Ng TK; Zeikus JG J Bacteriol; 1982 Jun; 150(3):1391-9. PubMed ID: 6210689 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of glucose and cellobiose by cellulolytic mesophilic Clostridium sp. strain H10. Giallo J; Gaudin C; Belaich JP; Petitdemange E; Caillet-Mangin F Appl Environ Microbiol; 1983 Mar; 45(3):843-9. PubMed ID: 6847188 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of a hydrogen- and ethanol-producing Clostridium sp. strain URNW. Ramachandran U; Wrana N; Cicek N; Sparling R; Levin DB Can J Microbiol; 2011 Mar; 57(3):236-43. PubMed ID: 21358765 [TBL] [Abstract][Full Text] [Related]
9. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Lo YC; Chen WM; Hung CH; Chen SD; Chang JS Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability. Munir RI; Schellenberg J; Henrissat B; Verbeke TJ; Sparling R; Levin DB PLoS One; 2014; 9(8):e104260. PubMed ID: 25101643 [TBL] [Abstract][Full Text] [Related]
11. Quantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobiose. Munir RI; Spicer V; Shamshurin D; Krokhin OV; Wilkins J; Ramachandran U; Sparling R; Levin DB J Proteomics; 2015 Jul; 125():41-53. PubMed ID: 25957533 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. Ren Z; Ward TE; Logan BE; Regan JM J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409 [TBL] [Abstract][Full Text] [Related]
13. Utilization of cellobiose and D-glucose by Clostridium thermocellum ATCC-27405. Hernández PE; Ordóñez JA; Sanz B Rev Esp Fisiol; 1985 Jun; 41(2):195-9. PubMed ID: 2930887 [TBL] [Abstract][Full Text] [Related]
14. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Desvaux M; Guedon E; Petitdemange H Appl Environ Microbiol; 2001 Sep; 67(9):3837-45. PubMed ID: 11525975 [TBL] [Abstract][Full Text] [Related]
15. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions. Gupta M; Gomez-Flores M; Nasr N; Elbeshbishy E; Hafez H; Hesham El Naggar M; Nakhla G Bioresour Technol; 2015 Sep; 192():741-7. PubMed ID: 26101964 [TBL] [Abstract][Full Text] [Related]
16. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass. Hassan EA; Abd-Alla MH; Bagy MM; Morsy FM Anaerobe; 2015 Aug; 34():125-31. PubMed ID: 26014369 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of hydrogen production by clostridium strains on beet molasses. Avci A; Kiliç NK; Dönmez G; Dönmez S Environ Technol; 2014; 35(1-4):278-85. PubMed ID: 24600866 [TBL] [Abstract][Full Text] [Related]
18. Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Pan CM; Fan YT; Xing Y; Hou HW; Zhang ML Bioresour Technol; 2008 May; 99(8):3146-54. PubMed ID: 17644378 [TBL] [Abstract][Full Text] [Related]
19. Induction of lactate production associated with a decrease in NADH cell content enables growth resumption of Clostridium cellulolyticum in batch cultures on cellobiose. Payot S; Guedon E; Gelhaye E; Petitdemange H Res Microbiol; 1999 Sep; 150(7):465-73. PubMed ID: 10540910 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogen production based on the evaluation of kinetic parameters of a mixed microbial culture using glucose and fruit-vegetable waste as feedstocks. Garcia-Peña EI; Canul-Chan M; Chairez I; Salgado-Manjarez E; Aranda-Barradas J Appl Biochem Biotechnol; 2013 Sep; 171(2):279-93. PubMed ID: 23832860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]