These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26093796)

  • 1. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.
    Kim HH; Lee H; Kim HE; Seo J; Hong SW; Lee JY; Lee C
    Water Res; 2015 Dec; 86():66-73. PubMed ID: 26093796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Feb; 42(4):1262-7. PubMed ID: 18351103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.
    Lee H; Lee HJ; Kim HE; Kweon J; Lee BD; Lee C
    J Hazard Mater; 2014 Jan; 265():201-7. PubMed ID: 24361799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Sep; 42(18):6936-41. PubMed ID: 18853812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen.
    Lee C; Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Jul; 42(13):4921-6. PubMed ID: 18678027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen.
    Lee C; Sedlak DL
    Environ Sci Technol; 2008 Nov; 42(22):8528-33. PubMed ID: 19068843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide.
    Kim MS; Kim HH; Lee KM; Lee HJ; Lee C
    Water Res; 2017 May; 114():277-285. PubMed ID: 28254645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells.
    Keenan CR; Goth-Goldstein R; Lucas D; Sedlak DL
    Environ Sci Technol; 2009 Jun; 43(12):4555-60. PubMed ID: 19603676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species.
    He D; Ma J; Collins RN; Waite TD
    Environ Sci Technol; 2016 Apr; 50(7):3820-8. PubMed ID: 26958862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen".
    Jiang J; Pang SY; Ma J
    Environ Sci Technol; 2008 Nov; 42(21):8167-8; author reply 8169. PubMed ID: 19031920
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxidative degradation of phenol by sulfidated zero valent iron under aerobic conditions: The effect of oxalate and tripolyphosphate ligands.
    Kong X; Zhang C; Zhang J; Xuan L; Qin C
    J Environ Sci (China); 2021 Feb; 100():82-89. PubMed ID: 33279056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron.
    Joo SH; Feitz AJ; Sedlak DL; Waite TD
    Environ Sci Technol; 2005 Mar; 39(5):1263-8. PubMed ID: 15787365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano- and micro-scale zerovalent iron-activated peroxydisulfate for methyl phenyl sulfoxide probe transformation in aerobic water: Quantifying the relative roles of SO
    Wang Z; Yu Y; Guo Q; Guan C; Jiang J
    Water Res; 2022 Sep; 223():119014. PubMed ID: 36041367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of 2-chlorobiphenyl oxidative degradation by nanoscale zero-valent iron in the presence of dissolved oxygen.
    Wang Y; Liu L; Fang G; Wang L; Kengara FO; Zhu C
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2265-2272. PubMed ID: 29119491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide.
    Lee H; Lee HJ; Sedlak DL; Lee C
    Chemosphere; 2013 Jul; 92(6):652-8. PubMed ID: 23433935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron-aluminum/air/water system.
    Fan J; Wang H; Ma L
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16686-98. PubMed ID: 27180839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process optimization in use of zero valent iron nanoparticles for oxidative transformations.
    Mylon SE; Sun Q; Waite TD
    Chemosphere; 2010 Sep; 81(1):127-31. PubMed ID: 20619873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions.
    Kim MS; Lee KM; Kim HH; Lee H; Kim DW; Kim JH; Lee C
    Water Res; 2020 Oct; 184():116172. PubMed ID: 32688155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferrates: greener oxidants with multimodal action in water treatment technologies.
    Sharma VK; Zboril R; Varma RS
    Acc Chem Res; 2015 Feb; 48(2):182-91. PubMed ID: 25668700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.