These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
962 related articles for article (PubMed ID: 26093948)
1. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel. Jin X; Gao L; Liu E; Yu F; Shu X; Wang H J Mech Behav Biomed Mater; 2015 Oct; 50():23-32. PubMed ID: 26093948 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications. Kumar DD; Kaliaraj GS J Mech Behav Biomed Mater; 2018 Jan; 77():106-115. PubMed ID: 28898721 [TBL] [Abstract][Full Text] [Related]
3. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L. Kao WH; Su YL; Horng JH; Zhang KX J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714 [TBL] [Abstract][Full Text] [Related]
4. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Xi T; Shahzad MB; Xu D; Sun Z; Zhao J; Yang C; Qi M; Yang K Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1079-1085. PubMed ID: 27987662 [TBL] [Abstract][Full Text] [Related]
5. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430 [TBL] [Abstract][Full Text] [Related]
6. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Nan L; Xu D; Gu T; Song X; Yang K Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():228-34. PubMed ID: 25579918 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076 [TBL] [Abstract][Full Text] [Related]
8. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel. Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional Ti-xCu coatings for cardiovascular interfaces: Control of microstructure and surface chemistry. Huang B; Jing F; Akhavan B; Ji L; Leng Y; Xie D; Bilek M; Huang N Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109969. PubMed ID: 31500016 [TBL] [Abstract][Full Text] [Related]
10. Hard Cr Mohammadtaheri M; Li Y; Yang Q Environ Sci Pollut Res Int; 2021 May; 28(20):25146-25154. PubMed ID: 31001781 [TBL] [Abstract][Full Text] [Related]
11. Microstructure, Wettability, Corrosion Resistance and Antibacterial Property of Cu-MTa Ding Z; Wang Y; Zhou Q; Ding Z; Liu J; He Q; Zhang H Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31906220 [TBL] [Abstract][Full Text] [Related]
12. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants. Sutha S; Kavitha K; Karunakaran G; Rajendran V Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4046-54. PubMed ID: 23910313 [TBL] [Abstract][Full Text] [Related]
13. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys. Zhang E; Li S; Ren J; Zhang L; Han Y Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():760-8. PubMed ID: 27612770 [TBL] [Abstract][Full Text] [Related]
14. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys. Zhang E; Ren J; Li S; Yang L; Qin G Biomed Mater; 2016 Oct; 11(6):065001. PubMed ID: 27767022 [TBL] [Abstract][Full Text] [Related]
15. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property. Zhang E; Li F; Wang H; Liu J; Wang C; Li M; Yang K Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4280-7. PubMed ID: 23910344 [TBL] [Abstract][Full Text] [Related]
16. Surface microstructure and antibacterial property of an active-screen plasma alloyed austenitic stainless steel surface with Cu and N. Dong Y; Li X; Bell T; Sammons R; Dong H Biomed Mater; 2010 Oct; 5(5):054105. PubMed ID: 20876967 [TBL] [Abstract][Full Text] [Related]
17. Improved tribological properties, electrochemical resistance and biocompatibility of AISI 316L stainless steel through duplex plasma nitriding and TiN coating treatment. Kao WH; Su YL; Horng JH; Hsieh YT J Biomater Appl; 2017 Jul; 32(1):12-27. PubMed ID: 28541124 [TBL] [Abstract][Full Text] [Related]
18. ZrO Lee M; Han SI; Kim C; Velumani S; Han A; Kassiba AH; Castaneda H ACS Appl Mater Interfaces; 2022 Mar; 14(11):13801-13811. PubMed ID: 35261228 [TBL] [Abstract][Full Text] [Related]
19. [Corrosion resistance of Ti-Cu alloy]. Song YX; Wang SM Zhonghua Kou Qiang Yi Xue Za Zhi; 2010 Sep; 45(9):565-8. PubMed ID: 21122454 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection. Zhuang Y; Zhang S; Yang K; Ren L; Dai K J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):484-495. PubMed ID: 31074107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]