These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26094202)

  • 21. Low voltage EELS-how low?
    Stöger-Pollach M
    Ultramicroscopy; 2014 Oct; 145():98-104. PubMed ID: 23927872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmission electron microscopy at 20 kV for imaging and spectroscopy.
    Kaiser U; Biskupek J; Meyer JC; Leschner J; Lechner L; Rose H; Stöger-Pollach M; Khlobystov AN; Hartel P; Müller H; Haider M; Eyhusen S; Benner G
    Ultramicroscopy; 2011 Jul; 111(8):1239-46. PubMed ID: 21801697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.
    Gu L; Sigle W; Koch CT; Nelayah J; Srot V; van Aken PA
    Ultramicroscopy; 2009 Aug; 109(9):1164-70. PubMed ID: 19525066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Valence EELS below the limit of inelastic delocalization using conical dark field EFTEM or Bessel beams.
    Stöger-Pollach M; Schachinger T; Biedermann K; Beyer V
    Ultramicroscopy; 2017 Feb; 173():24-30. PubMed ID: 27912166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization of inelastic electron scattering in the low-loss energy regime.
    Zhou W; Pennycook SJ; Idrobo JC
    Ultramicroscopy; 2012 Aug; 119():51-6. PubMed ID: 22206602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optoelectronic properties of InAlN/GaN distributed bragg reflector heterostructure examined by valence electron energy loss spectroscopy.
    Eljarrat A; Estradé S; Gačević Z; Fernández-Garrido S; Calleja E; Magén C; Peiró F
    Microsc Microanal; 2012 Oct; 18(5):1143-54. PubMed ID: 23058502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Band gap measurement by nano-beam STEM with small off-axis angle transmission electron energy loss spectroscopy (TEELS).
    Wang YY; Jin Q; Zhuang K; Choi JK; Nxumalo J
    Ultramicroscopy; 2021 Jan; 220():113164. PubMed ID: 33186852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime.
    Hachtel JA; Lupini AR; Idrobo JC
    Sci Rep; 2018 Apr; 8(1):5637. PubMed ID: 29618757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy.
    Helo Y; Rosenberg I; D'Souza D; Macdonald L; Speller R; Royle G; Gibson A
    Phys Med Biol; 2014 Apr; 59(8):1963-78. PubMed ID: 24694567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy.
    Miyata T; Fukuyama M; Hibara A; Okunishi E; Mukai M; Mizoguchi T
    Microscopy (Oxf); 2014 Oct; 63(5):377-82. PubMed ID: 25015973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron Inelastic Mean Free Paths for LiF, CaF
    Flores-Mancera MA; Villarrubia JS; Massillon-Jl G
    ACS Omega; 2020 Mar; 5(8):4139-4147. PubMed ID: 32149243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comment on "Investigation on optical properties of ZnO nanowires by electron energy-loss spectroscopy".
    Stöger-Pollach M; Galek T
    Micron; 2006; 37(8):748-50. PubMed ID: 16621579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range.
    Schaffer B; Riegler K; Kothleitner G; Grogger W; Hofer F
    Micron; 2009 Feb; 40(2):269-73. PubMed ID: 18722779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate band gaps and dielectric properties from one-electron theories (abstract only).
    Kresse G; Shishkin M; Marsman M; Paier J
    J Phys Condens Matter; 2008 Feb; 20(6):064203. PubMed ID: 21693865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometric approach to wavelength tuning of the Cerenkov free-electron laser.
    Fisch EE; Walsh JE
    Opt Lett; 1992 Jun; 17(11):813-5. PubMed ID: 19794640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope.
    Lazar S; Botton GA; Zandbergen HW
    Ultramicroscopy; 2006; 106(11-12):1091-103. PubMed ID: 16872750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of surfaces and interfaces on high spatial resolution vibrational EELS from SiO2.
    Venkatraman K; Rez P; March K; Crozier PA
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i14-i23. PubMed ID: 29401291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Below gap optical absorption in GaAs driven by intense, single-cycle coherent transition radiation.
    Goodfellow J; Fuchs M; Daranciang D; Ghimire S; Chen F; Loos H; Reis DA; Fisher AS; Lindenberg AM
    Opt Express; 2014 Jul; 22(14):17423-9. PubMed ID: 25090555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.