BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 26094698)

  • 1. Ancient Venom Systems: A Review on Cnidaria Toxins.
    Jouiaei M; Yanagihara AA; Madio B; Nevalainen TJ; Alewood PF; Fry BG
    Toxins (Basel); 2015 Jun; 7(6):2251-71. PubMed ID: 26094698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique Diversity of Sting-Related Toxins Based on Transcriptomic and Proteomic Analysis of the Jellyfish Cyanea capillata and Nemopilema nomurai (Cnidaria: Scyphozoa).
    Wang C; Wang B; Wang B; Wang Q; Liu G; Wang T; He Q; Zhang L
    J Proteome Res; 2019 Jan; 18(1):436-448. PubMed ID: 30481029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Beyond Primary Sequence"-Proteomic Data Reveal Complex Toxins in Cnidarian Venoms.
    Jaimes-Becerra A; Gacesa R; Doonan LB; Hartigan A; Marques AC; Okamura B; Long PF
    Integr Comp Biol; 2019 Oct; 59(4):777-785. PubMed ID: 31225595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone.
    Jouiaei M; Sunagar K; Federman Gross A; Scheib H; Alewood PF; Moran Y; Fry BG
    Mol Biol Evol; 2015 Jun; 32(6):1598-610. PubMed ID: 25757852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms.
    Klompen AML; Macrander J; Reitzel AM; Stampar SN
    Mar Drugs; 2020 Aug; 18(8):. PubMed ID: 32764303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cnidarian parasite
    Americus B; Hams N; Klompen AML; Alama-Bermejo G; Lotan T; Bartholomew JL; Atkinson SD
    PeerJ; 2021; 9():e12606. PubMed ID: 35003924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of Toxins from Cnidaria.
    D'Ambra I; Lauritano C
    Mar Drugs; 2020 Oct; 18(10):. PubMed ID: 33036158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria.
    Jaimes-Becerra A; Chung R; Morandini AC; Weston AJ; Padilla G; Gacesa R; Ward M; Long PF; Marques AC
    Toxicon; 2017 Oct; 137():19-26. PubMed ID: 28711466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-forming toxins in Cnidaria.
    Podobnik M; Anderluh G
    Semin Cell Dev Biol; 2017 Dec; 72():133-141. PubMed ID: 28751252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition and use of nematocysts by cnidarian predators.
    Greenwood PG
    Toxicon; 2009 Dec; 54(8):1065-70. PubMed ID: 19269306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Old Weapons for New Wars: Bioactive Molecules From Cnidarian Internal Defense Systems.
    Rosa TM; Giovanna PM; Maria M; Angela M; Matteo C
    Cent Nerv Syst Agents Med Chem; 2016; 16(3):183-196. PubMed ID: 26159581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa).
    Klompen AML; Kayal E; Collins AG; Cartwright P
    Genome Biol Evol; 2021 Jun; 13(6):. PubMed ID: 33892512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamically evolving nematocyst content of an anthozoan, a scyphozoan, and a hydrozoan.
    Rachamim T; Morgenstern D; Aharonovich D; Brekhman V; Lotan T; Sher D
    Mol Biol Evol; 2015 Mar; 32(3):740-53. PubMed ID: 25518955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis.
    Weston AJ; Chung R; Dunlap WC; Morandini AC; Marques AC; Moura-da-Silva AM; Ward M; Padilla G; da Silva LF; Andreakis N; Long PF
    Toxicon; 2013 Sep; 71():11-7. PubMed ID: 23688393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phylum Cnidaria and investigations of its toxins and venoms until 1990.
    Turk T; Kem WR
    Toxicon; 2009 Dec; 54(8):1031-7. PubMed ID: 19576920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis.
    Hérnández-Elizárraga VH; Vega-Tamayo JE; Olguín-López N; Ibarra-Alvarado C; Rojas-Molina A
    J Proteomics; 2023 Sep; 288():104984. PubMed ID: 37536522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crude venom from nematocysts of Pelagia noctiluca (Cnidaria: Scyphozoa) elicits a sodium conductance in the plasma membrane of mammalian cells.
    Morabito R; Costa R; Rizzo V; Remigante A; Nofziger C; La Spada G; Marino A; Paulmichl M; Dossena S
    Sci Rep; 2017 Jan; 7():41065. PubMed ID: 28112211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings.
    Remigante A; Costa R; Morabito R; La Spada G; Marino A; Dossena S
    Toxins (Basel); 2018 Mar; 10(4):. PubMed ID: 29570625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydralysins, a new category of beta-pore-forming toxins in cnidaria.
    Sher D; Fishman Y; Zhang M; Lebendiker M; Gaathon A; Mancheño JM; Zlotkin E
    J Biol Chem; 2005 Jun; 280(24):22847-55. PubMed ID: 15824108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Proteome Reveals the Key Lethal Toxins in the Venom of Jellyfish
    Li R; Yu H; Li T; Li P
    J Proteome Res; 2020 Jun; 19(6):2491-2500. PubMed ID: 32374608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.