BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26095396)

  • 21. Depupylase Dop Requires Inorganic Phosphate in the Active Site for Catalysis.
    Bolten M; Vahlensieck C; Lipp C; Leibundgut M; Ban N; Weber-Ban E
    J Biol Chem; 2017 Mar; 292(10):4044-4053. PubMed ID: 28119453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial Proteasomes.
    Jastrab JB; Darwin KH
    Annu Rev Microbiol; 2015; 69():109-27. PubMed ID: 26488274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pupylated proteins are subject to broad proteasomal degradation specificity and differential depupylation.
    Laederach J; Cui H; Weber-Ban E
    PLoS One; 2019; 14(4):e0215439. PubMed ID: 31009487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of pupylation of Streptomyces hygroscopicus 5008 in vitro.
    Xu X; Niu Y; Liang K; Shen G; Cao Q; Yang Y
    Biochem Biophys Res Commun; 2016 May; 474(1):126-130. PubMed ID: 27105915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cdc48-like protein of actinobacteria (Cpa) is a novel proteasome interactor in mycobacteria and related organisms.
    Ziemski M; Jomaa A; Mayer D; Rutz S; Giese C; Veprintsev D; Weber-Ban E
    Elife; 2018 May; 7():. PubMed ID: 29809155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How to control an intracellular proteolytic system: Coordinated regulatory switches in the mycobacterial Pup-proteasome system.
    Gur E; Korman M; Hecht N; Regev O; Schlussel S; Silberberg N; Elharar Y
    Biochim Biophys Acta Mol Cell Res; 2017 Dec; 1864(12):2253-2260. PubMed ID: 28887055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. "Depupylation" of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates.
    Burns KE; Cerda-Maira FA; Wang T; Li H; Bishai WR; Darwin KH
    Mol Cell; 2010 Sep; 39(5):821-7. PubMed ID: 20705495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Allosteric transitions direct protein tagging by PafA, the prokaryotic ubiquitin-like protein (Pup) ligase.
    Ofer N; Forer N; Korman M; Vishkautzan M; Khalaila I; Gur E
    J Biol Chem; 2013 Apr; 288(16):11287-93. PubMed ID: 23471967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Pup-Proteasome System Protects Mycobacteria from Antimicrobial Antifolates.
    Guzzo MB; Li Q; Nguyen HV; Boom WH; Nguyen L
    Antimicrob Agents Chemother; 2021 Mar; 65(4):. PubMed ID: 33468462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and evaluation of a selective fluorogenic Pup derived assay reagent for Dop, a potential drug target in Mycobacterium tuberculosis.
    Merkx R; Burns KE; Slobbe P; El Oualid F; El Atmioui D; Darwin KH; Ovaa H
    Chembiochem; 2012 Sep; 13(14):2056-60. PubMed ID: 22927162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus.
    Striebel F; Hunkeler M; Summer H; Weber-Ban E
    EMBO J; 2010 Apr; 29(7):1262-71. PubMed ID: 20203624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pup-proteasome system of Mycobacterium tuberculosis.
    Samanovic MI; Li H; Darwin KH
    Subcell Biochem; 2013; 66():267-95. PubMed ID: 23479444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pup-Click-A New Chemoenzymatic Method for the Generation of Singly Pupylated Targets.
    Regev O; Linder H; Gur E
    Bioconjug Chem; 2019 Nov; 30(11):2909-2916. PubMed ID: 31663726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct Detection of Products from S-Adenosylmethionine-Dependent Enzymes Using a Competitive Fluorescence Polarization Assay.
    Banco MT; Mishra V; Greeley SC; Ronning DR
    Anal Chem; 2018 Feb; 90(3):1740-1747. PubMed ID: 29275620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Survival in Hostile Conditions: Pupylation and the Proteasome in Actinobacterial Stress Response Pathways.
    von Rosen T; Keller LM; Weber-Ban E
    Front Mol Biosci; 2021; 8():685757. PubMed ID: 34179091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A luminescence assay for natural product inhibitors of the Mycobacterium tuberculosis proteasome.
    Gunderwala A; Porter J
    Phytochem Anal; 2016; 27(2):126-32. PubMed ID: 26778282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic and Proteomic Analyses of Pupylation in Streptomyces coelicolor.
    Compton CL; Fernandopulle MS; Nagari RT; Sello JK
    J Bacteriol; 2015 Sep; 197(17):2747-53. PubMed ID: 26031910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a high-throughput fluorescence polarization assay for the discovery of phosphopantetheinyl transferase inhibitors.
    Duckworth BP; Aldrich CC
    Anal Biochem; 2010 Aug; 403(1-2):13-9. PubMed ID: 20382102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-throughput screening fluorescence polarization assay for fatty acid adenylating enzymes in Mycobacterium tuberculosis.
    Grimes KD; Aldrich CC
    Anal Biochem; 2011 Oct; 417(2):264-73. PubMed ID: 21771578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pupylation pathway and its role in mycobacteria.
    Barandun J; Delley CL; Weber-Ban E
    BMC Biol; 2012 Nov; 10():95. PubMed ID: 23198822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.