These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26095440)

  • 1. An electrophysiological insight into visual attention mechanisms underlying schizotypy.
    Fuggetta G; Bennett MA; Duke PA
    Biol Psychol; 2015 Jul; 109():206-21. PubMed ID: 26095440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing links between visual short term memory, visual attention and cognitive control processes through practice: An electrophysiological insight.
    Fuggetta G; Duke PA
    Biol Psychol; 2017 May; 126():48-60. PubMed ID: 28396214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding attention control and selection in visual spatial attention.
    Hong X; Bo K; Meyyappan S; Tong S; Ding M
    Hum Brain Mapp; 2020 Oct; 41(14):3900-3921. PubMed ID: 32542852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Object-based target templates guide attention during visual search.
    Berggren N; Eimer M
    J Exp Psychol Hum Percept Perform; 2018 Sep; 44(9):1368-1382. PubMed ID: 29723006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of deficit of visuospatial attention shift in children with developmental coordination disorder: a neurophysiological measure of the endogenous Posner paradigm.
    Tsai CL; Pan CY; Cherng RJ; Hsu YW; Chiu HH
    Brain Cogn; 2009 Dec; 71(3):246-58. PubMed ID: 19751962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mental rotation impairs attention shifting and short-term memory encoding: neurophysiological evidence against the response-selection bottleneck model of dual-task performance.
    Pannebakker MM; Jolicœur P; van Dam WO; Band GP; Ridderinkhof KR; Hommel B
    Neuropsychologia; 2011 Sep; 49(11):2985-93. PubMed ID: 21736889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bilateral N2pc (N2pcb) component is elicited by search targets displayed on the vertical midline.
    Doro M; Bellini F; Brigadoi S; Eimer M; Dell'Acqua R
    Psychophysiology; 2020 Mar; 57(3):e13512. PubMed ID: 31815301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitative differences in the guidance of attention during single-color and multiple-color visual search: behavioral and electrophysiological evidence.
    Grubert A; Eimer M
    J Exp Psychol Hum Percept Perform; 2013 Oct; 39(5):1433-42. PubMed ID: 23244044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the switching of the focus of attention within working memory: A combined event-related potential and behavioral study.
    Frenken M; Berti S
    Int J Psychophysiol; 2018 Apr; 126():30-41. PubMed ID: 29476873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus- and Response-locked Posterior Contralateral Negativity Bisect Cognitive Operations in Visual Search.
    Drisdelle BL; Jolicœur P
    J Cogn Neurosci; 2019 Apr; 31(4):574-591. PubMed ID: 30566367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amplitude of N2pc reflects the physical disparity between target item and distracters.
    Zhao G; Liu Q; Zhang Y; Jiao J; Zhang Q; Sun H; Li H
    Neurosci Lett; 2011 Mar; 491(1):68-72. PubMed ID: 21215298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The speed of voluntary and priority-driven shifts of visual attention.
    Jenkins M; Grubert A; Eimer M
    J Exp Psychol Hum Percept Perform; 2018 Jan; 44(1):27-37. PubMed ID: 28447847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From alternation to repetition: Spatial attention biases contribute to sequential effects in a choice reaction-time task.
    Green JJ; Spalek TM; McDonald JJ
    Cogn Neurosci; 2020 Jan; 11(1-2):24-36. PubMed ID: 31512985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cuing study of the N2pc component: an index of attentional deployment to objects rather than spatial locations.
    Woodman GF; Arita JT; Luck SJ
    Brain Res; 2009 Nov; 1297():101-11. PubMed ID: 19682440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of relevance and expectation for the control of attention in visual search.
    Berggren N; Eimer M
    J Exp Psychol Hum Percept Perform; 2019 Sep; 45(9):1191-1205. PubMed ID: 31157535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors.
    Allon AS; Luria R
    Psychophysiology; 2019 May; 56(5):e13323. PubMed ID: 30609072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How microsaccades relate to lateralized ERP components of spatial attention: A co-registration study.
    Meyberg S; Sommer W; Dimigen O
    Neuropsychologia; 2017 May; 99():64-80. PubMed ID: 28254651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-ERP dynamics in a visual Continuous Performance Test.
    Karamacoska D; Barry RJ; De Blasio FM; Steiner GZ
    Int J Psychophysiol; 2019 Dec; 146():249-260. PubMed ID: 31648022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.