These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26095447)

  • 1. Suppression of Arabidopsis flowering by near-null magnetic field is affected by light.
    Xu C; Li Y; Yu Y; Zhang Y; Wei S
    Bioelectromagnetics; 2015 Sep; 36(6):476-9. PubMed ID: 26095447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering.
    Xu C; Yu Y; Zhang Y; Li Y; Wei S
    Bioelectromagnetics; 2017 Jan; 38(1):1-10. PubMed ID: 27598690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Arabidopsis flowering by near-null magnetic field is mediated by auxin.
    Xu C; Zhang Y; Yu Y; Li Y; Wei S
    Bioelectromagnetics; 2018 Jan; 39(1):15-24. PubMed ID: 28940601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Null Magnetic Field Suppresses Fruit Growth in Arabidopsis.
    Xu C; Feng S; Yu Y; Zhang Y; Wei S
    Bioelectromagnetics; 2021 Oct; 42(7):593-602. PubMed ID: 34289513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of the local geomagnetic field affects reproductive growth in Arabidopsis.
    Xu C; Wei S; Lu Y; Zhang Y; Chen C; Song T
    Bioelectromagnetics; 2013 Sep; 34(6):437-42. PubMed ID: 23568853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geomagnetic field impacts on cryptochrome and phytochrome signaling.
    Agliassa C; Narayana R; Christie JM; Maffei ME
    J Photochem Photobiol B; 2018 Aug; 185():32-40. PubMed ID: 29864723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    Nefissi R; Natsui Y; Miyata K; Oda A; Hase Y; Nakagawa M; Ghorbel A; Mizoguchi T
    J Exp Bot; 2011 May; 62(8):2731-44. PubMed ID: 21296763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of flowering by green light depends on its photon flux density and involves cryptochromes.
    Meng Q; Runkle ES
    Physiol Plant; 2019 Jul; 166(3):762-771. PubMed ID: 30187495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis.
    Endo M; Mochizuki N; Suzuki T; Nagatani A
    Plant Cell; 2007 Jan; 19(1):84-93. PubMed ID: 17259260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response.
    Gu NN; Zhang YC; Yang HQ
    Mol Plant; 2012 Jan; 5(1):85-97. PubMed ID: 21765176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of flowering time by light quality.
    Cerdán PD; Chory J
    Nature; 2003 Jun; 423(6942):881-5. PubMed ID: 12815435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana.
    Wang FF; Lian HL; Kang CY; Yang HQ
    Mol Plant; 2010 Jan; 3(1):246-59. PubMed ID: 19965572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis.
    Wu L; Yang HQ
    Mol Plant; 2010 May; 3(3):539-48. PubMed ID: 20053798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arabidopsis Myb genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity.
    Zhao C; Hanada A; Yamaguchi S; Kamiya Y; Beers EP
    Plant J; 2011 May; 66(3):502-15. PubMed ID: 21255164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2.
    Eckel M; Steinchen W; Batschauer A
    Plant J; 2018 Oct; 96(2):389-403. PubMed ID: 30044014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark.
    Pooam M; Arthaut LD; Burdick D; Link J; Martino CF; Ahmad M
    Planta; 2019 Feb; 249(2):319-332. PubMed ID: 30194534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis.
    Liu Y; Li X; Li K; Liu H; Lin C
    PLoS Genet; 2013; 9(10):e1003861. PubMed ID: 24130508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of pleiotropic effects of functional cryptochrome genes by Terminal Flower 1.
    Buchovsky AS; Strasser B; Cerdán PD; Casal JJ
    Genetics; 2008 Nov; 180(3):1467-74. PubMed ID: 18791256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of weak static magnetic fields on the gene expression of seedlings of Arabidopsis thaliana.
    Dhiman SK; Galland P
    J Plant Physiol; 2018 Dec; 231():9-18. PubMed ID: 30199755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocycle and signaling mechanisms of plant cryptochromes.
    Ahmad M
    Curr Opin Plant Biol; 2016 Oct; 33():108-115. PubMed ID: 27423124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.