These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26095451)
1. Cysteine-Mediated Intracellular Building of Luciferin to Enhance Probe Retention and Fluorescence Turn-On. Zheng M; Huang H; Zhou M; Wang Y; Zhang Y; Ye D; Chen HY Chemistry; 2015 Jul; 21(29):10506-12. PubMed ID: 26095451 [TBL] [Abstract][Full Text] [Related]
2. Real-time monitoring of endogenous cysteine in LPS-induced oxidative stress process with a novel lysosome-targeted fluorescent probe. Yang Z; Li J; Li S; Zhou J; Cao Z; Li L; Zheng D; Zhao X; Wang W; Deng Y; Fang Y Anal Chim Acta; 2023 Oct; 1279():341819. PubMed ID: 37827641 [TBL] [Abstract][Full Text] [Related]
3. Mitochondria-Targeted Near-Infrared Fluorescent Off-On Probe for Selective Detection of Cysteine in Living Cells and in Vivo. Han C; Yang H; Chen M; Su Q; Feng W; Li F ACS Appl Mater Interfaces; 2015 Dec; 7(50):27968-75. PubMed ID: 26618279 [TBL] [Abstract][Full Text] [Related]
4. A Novel Dicyanoisophorone-Based Ratiometric Fluorescent Probe for Selective Detection of Cysteine and Its Bioimaging Application in Living Cells. Zhang H; Qin N; Fang Z Molecules; 2018 Feb; 23(2):. PubMed ID: 29470399 [TBL] [Abstract][Full Text] [Related]
5. Benzothiazole-Pyimidine-Based BF2 Complex for Selective Detection of Cysteine. Liu Q; Zhang C; Wang X; Gong S; He W; Liu Z Chem Asian J; 2016 Jan; 11(2):202-6. PubMed ID: 26530080 [TBL] [Abstract][Full Text] [Related]
6. Using Bioluminescence Turn-On To Detect Cysteine in Vitro and in Vivo. Zhang M; Wang L; Zhao Y; Wang F; Wu J; Liang G Anal Chem; 2018 Apr; 90(8):4951-4954. PubMed ID: 29606000 [TBL] [Abstract][Full Text] [Related]
7. A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells. Wang P; Wang Q; Huang J; Li N; Gu Y Biosens Bioelectron; 2017 Jun; 92():583-588. PubMed ID: 27829568 [TBL] [Abstract][Full Text] [Related]
8. Molecular modulated cysteine-selective fluorescent probe. Jung HS; Pradhan T; Han JH; Heo KJ; Lee JH; Kang C; Kim JS Biomaterials; 2012 Nov; 33(33):8495-502. PubMed ID: 22906610 [TBL] [Abstract][Full Text] [Related]
9. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells. Cai S; Liu C; Jiao X; Zhao L; Zeng X J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785 [TBL] [Abstract][Full Text] [Related]
10. A simple excited-state intramolecular proton transfer probe based on a new strategy of thiol-azide reaction for the selective sensing of cysteine and glutathione. Zhang D; Yang Z; Li H; Pei Z; Sun S; Xu Y Chem Commun (Camb); 2016 Jan; 52(4):749-52. PubMed ID: 26565523 [TBL] [Abstract][Full Text] [Related]
11. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe. Liu Y; Yu D; Ding S; Xiao Q; Guo J; Feng G ACS Appl Mater Interfaces; 2014 Oct; 6(20):17543-50. PubMed ID: 25253409 [TBL] [Abstract][Full Text] [Related]
12. Highly selective fluorescence off-on probes for biothiols and imaging in live cells. Zhang D; Chen W; Kang J; Ye Y; Zhao Y; Xian M Org Biomol Chem; 2014 Sep; 12(35):6837-41. PubMed ID: 25047799 [TBL] [Abstract][Full Text] [Related]
13. A novel benzothiazole-based fluorescent probe for cysteine detection and its application on test paper and in living cells. Yu Y; Xu H; Zhang W; Wang B; Jiang Y Talanta; 2018 Jan; 176():151-155. PubMed ID: 28917734 [TBL] [Abstract][Full Text] [Related]
14. A fluorescence turn-on probe for cysteine and homocysteine based on thiol-triggered benzothiazolidine ring formation. Liu SR; Chang CY; Wu SP Anal Chim Acta; 2014 Nov; 849():64-9. PubMed ID: 25300219 [TBL] [Abstract][Full Text] [Related]
15. A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione. Niu LY; Guan YS; Chen YZ; Wu LZ; Tung CH; Yang QZ Chem Commun (Camb); 2013 Feb; 49(13):1294-6. PubMed ID: 23295243 [TBL] [Abstract][Full Text] [Related]
16. Real-Time Monitoring of Endogenous Cysteine Levels In Vivo by near-Infrared Turn-on Fluorescent Probe with Large Stokes Shift. Qi Y; Huang Y; Li B; Zeng F; Wu S Anal Chem; 2018 Jan; 90(1):1014-1020. PubMed ID: 29182316 [TBL] [Abstract][Full Text] [Related]
17. A cysteine probe with high selectivity and sensitivity promoted by response-assisted electrostatic attraction. Zhou X; Jin X; Sun G; Li D; Wu X Chem Commun (Camb); 2012 Sep; 48(70):8793-5. PubMed ID: 22836111 [TBL] [Abstract][Full Text] [Related]
18. Highly Sensitive Bioluminescent Probe for Thiol Detection in Living Cells. Hemmi M; Ikeda Y; Shindo Y; Nakajima T; Nishiyama S; Oka K; Sato M; Hiruta Y; Citterio D; Suzuki K Chem Asian J; 2018 Mar; 13(6):648-655. PubMed ID: 29359483 [TBL] [Abstract][Full Text] [Related]
19. Molecular Engineering of α-Substituted Acrylate Ester Template for Efficient Fluorescence Probe of Hydrogen Polysulfides. Guo J; Yang S; Guo C; Zeng Q; Qing Z; Cao Z; Li J; Yang R Anal Chem; 2018 Jan; 90(1):881-887. PubMed ID: 29210571 [TBL] [Abstract][Full Text] [Related]
20. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2. Ishii T; Uchida K Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]