These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 26095528)
1. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland. Bertolesi GE; Hehr CL; McFarlane S Pigment Cell Melanoma Res; 2015 Sep; 28(5):559-71. PubMed ID: 26095528 [TBL] [Abstract][Full Text] [Related]
2. Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light. Bertolesi GE; Vazhappilly ST; Hehr CL; McFarlane S Pigment Cell Melanoma Res; 2016 Mar; 29(2):186-98. PubMed ID: 26582755 [TBL] [Abstract][Full Text] [Related]
3. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation. Bertolesi GE; Song YN; Atkinson-Leadbeater K; Yang JJ; McFarlane S Pigment Cell Melanoma Res; 2017 Jul; 30(4):413-423. PubMed ID: 28371026 [TBL] [Abstract][Full Text] [Related]
4. Endothelin modulates the circadian expression of non-visual opsins. Moraes MN; Lima LH; Ramos BC; Poletini Mde O; Castrucci AM Gen Comp Endocrinol; 2014 Sep; 205():279-86. PubMed ID: 24816266 [TBL] [Abstract][Full Text] [Related]
5. Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation. Bertolesi GE; Hehr CL; Munn H; McFarlane S Pigment Cell Melanoma Res; 2016 Nov; 29(6):688-701. PubMed ID: 27557040 [TBL] [Abstract][Full Text] [Related]
6. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Bertolesi GE; McFarlane S Pigment Cell Melanoma Res; 2018 May; 31(3):354-373. PubMed ID: 29239123 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. Chaurasia SS; Rollag MD; Jiang G; Hayes WP; Haque R; Natesan A; Zatz M; Tosini G; Liu C; Korf HW; Iuvone PM; Provencio I J Neurochem; 2005 Jan; 92(1):158-70. PubMed ID: 15606905 [TBL] [Abstract][Full Text] [Related]
8. Wiring the retinal circuits activated by light during early development. Bertolesi GE; Hehr CL; McFarlane S Neural Dev; 2014 Feb; 9():3. PubMed ID: 24521229 [TBL] [Abstract][Full Text] [Related]
9. The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors. Bertolesi GE; Atkinson-Leadbeater K; Mackey EM; Song YN; Heyne B; McFarlane S J Photochem Photobiol B; 2020 Nov; 212():112024. PubMed ID: 32957069 [TBL] [Abstract][Full Text] [Related]
10. Regulation of melanopsins and Per1 by α -MSH and melatonin in photosensitive Xenopus laevis melanophores. Moraes MN; dos Santos LR; Mezzalira N; Poletini MO; Castrucci AM Biomed Res Int; 2014; 2014():654710. PubMed ID: 24959583 [TBL] [Abstract][Full Text] [Related]
11. Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer. Semo M; Muñoz Llamosas M; Foster RG; Jeffery G Vis Neurosci; 2005; 22(1):111-6. PubMed ID: 15842746 [TBL] [Abstract][Full Text] [Related]
12. Early onset and differential temporospatial expression of melanopsin isoforms in the developing chicken retina. Verra DM; Contín MA; Hicks D; Guido ME Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5111-20. PubMed ID: 21676907 [TBL] [Abstract][Full Text] [Related]
14. Melanopsins: Localization and Phototransduction in Xenopus laevis Melanophores. Moraes MN; Ramos BC; Poletini MO; Castrucci AM Photochem Photobiol; 2015; 91(5):1133-41. PubMed ID: 26108966 [TBL] [Abstract][Full Text] [Related]
15. Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. Bellingham J; Chaurasia SS; Melyan Z; Liu C; Cameron MA; Tarttelin EE; Iuvone PM; Hankins MW; Tosini G; Lucas RJ PLoS Biol; 2006 Jul; 4(8):e254. PubMed ID: 16856781 [TBL] [Abstract][Full Text] [Related]
16. Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system. Matos-Cruz V; Blasic J; Nickle B; Robinson PR; Hattar S; Halpern ME PLoS One; 2011; 6(9):e25111. PubMed ID: 21966429 [TBL] [Abstract][Full Text] [Related]
17. Possible paracrine function of alpha-melanocyte-stimulating hormone and inhibition of its melanin-dispersing activity by N-terminal acetylation in the skin of the barfin flounder, Verasper moseri. Kobayashi Y; Mizusawa K; Yamanome T; Chiba H; Takahashi A Gen Comp Endocrinol; 2009 May; 161(3):419-24. PubMed ID: 19245814 [TBL] [Abstract][Full Text] [Related]
18. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis. Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930 [TBL] [Abstract][Full Text] [Related]
19. Functional diversity of melanopsins and their global expression in the teleost retina. Davies WI; Zheng L; Hughes S; Tamai TK; Turton M; Halford S; Foster RG; Whitmore D; Hankins MW Cell Mol Life Sci; 2011 Dec; 68(24):4115-32. PubMed ID: 21833582 [TBL] [Abstract][Full Text] [Related]
20. Isolation and characterization of melanopsin photoreceptors of Atlantic salmon (Salmo salar). Sandbakken M; Ebbesson L; Stefansson S; Helvik JV J Comp Neurol; 2012 Nov; 520(16):3727-44. PubMed ID: 22522777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]